Page 66 - Plant-Based Remediation Processes
P. 66
54 M. Mleczek et al.
SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron
homeostasis in Arabidopsis. Plant Cell 24:738–761
Cailliatte R, Lapeyre B, Briat J-F, Mari S, Curie C (2009) The NRAMP6 metal transporter
contributes to cadmium toxicity. Biochem J 422:217–228
Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating
plants. J Biol Inorg Chem 11:2–12
Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J,
Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced
arsenic accumulation. Plant Cell 19:1123–1133
Catty P, Boutigny S, Miras R, Joyard J, Rolland N, Seigneurin-Berny D (2011) Biochemical
characterization of AtHMA6/PAA1, a chloroplast envelope Cu(I)-ATPase. J Biol Chem
286:36188–36197. doi:10.1074/jbc.M111.241034
Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9
Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative
stress in Oryza Sativa L. roots. Bulg J Plant Physiol 30:95–110
Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:
475–486
Clemens S, Palmgren MG, Kra ¨mer U (2002) A long way ahead: understanding and engineering
plant metal accumulation. Trends Plant Sci 7:309–315
Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport
throughout plants. Curr Opin Plant Biol 9:322–330
Dat JF, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual
action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795
Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK,
Talke IN, Kra ¨mer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots
play a key role in Zn hyperaccumulation. Plant Cell 24:708–723
Delhaize E (2003) Genes encoding proteins of the cation diffusion facilitator family that confer
manganese tolerance. Plant Cell Online 15:1131–1142
Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson
AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance.
Plant J 51:198–210
Desbrosses-Fonrouge A, Voight K, Schroder A, Arrivault S, Thomine S, Kraemer U (2005)
Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates
Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174
Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of Short Rotation
Coppice (SRC) for increased bioenergy production–biological and economic potential.
Biomass Bioenerg 35:835–842
Directive 2009/28/EC of the European Parliament and of the Council of 23 April (2009) on the
promotion of the use of energy from renewable sources and amending and subsequently
repealing Directives 2001/77/EC and 2003/30/EC
˛
Drzewiecka K, Mleczek M, Gasecka M, Magdziak Z, Golin ´ski P (2012) Changes in Salix viminalis
L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions – hydroponic
investigations. J Hazard Mater 217:429–438
Farina R, Beneduzi A, Ambrosini A, de Campos SB, Lisboa BB, Wendisch V, Vargas LK,
Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities
associated with the stages of canola growth. Appl Soil Ecol 55:44–52
Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased
glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators.
Plant Cell 16:2176–2191
Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid
signals glutathione-mediated nickel tolerance in Thlaspi hyperaccumulators. Plant Physiol
137:1082–1091