Page 70 - Plant-Based Remediation Processes
P. 70
58 M. Mleczek et al.
Shahzad Z, Gosti F, Fre ´rot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P (2010)
The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive
evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6:1000911. doi:10.1371/
journal.pgen.1000911
Singh A, Prasad SH (2011) Reduction of heavy metal load in food chain: technology assessment.
Rev Environ Sci Biotechnol 10:199–214
Song WY, Choi KS, Kimdo Y, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH,
Lim YP, Noh EW, Lee Y, Martinoia E (2010a) Arabidopsis PCR2 is a zinc exporter involved in
both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252
Song WY, Park J, Mendoza-Co ´zatl DG, Suter-Grotemeyer M, Shim D, Ho ¨rtensteiner S, Geisler M,
Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010b) Arsenic tolerance in
Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci
USA 107:21187–21192
Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role
of nicotianamine in the intracellular delivery of metals and plant reproductive development.
Plant Cell 15:1263–1280
Talke IN, Hanikenne M, Kra ¨mer U (2006) Zinc-dependent global transcriptional control, tran-
scriptional deregulation, and higher gene copy number for genes in metal homeostasis of the
hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167
Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X (2012) Growth and caesium uptake responses of
Phytolacca americana Linn. and Amaranthus cruentus L. grown on caesium contaminated soil
to elevated CO 2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp.
D54, or in combination. J Hazard Mater 198:188–197
Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ
13:195–206
Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in
plants. New Phytol 181:759–776
Vert GA (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local
and long-distance signals. Plant Physiol 132:796–804
Wang X, Wang Y, Mahmood Q, Islam E, Jin X, Li T, Yang X, Liu D (2009) The effect of EDDS
addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance.
J Hazard Mater 168:530–535
Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006)
Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal
ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458
Weyens N, Schellingen K, Dupae J, Croes S, van der Lelie D, Vangronsveld J (2010) Can bacteria
associated with willow explain differences in Cd accumulation capacity between different
cultivars? J Biotechnol 150:291–292
Witters N, Mendelsohn RO, Van Slycken S, Weyens N, Schreurs E, Meers E, Tack F, Carleer R,
Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? Conclusions
from a case study. I: Energy production and carbon dioxide abatement. Biomass Bioenerg 39:
454–469
Wo ´jcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium
stress. Biol Planta 55:125–132
Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ (2012)
Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium
tolerance via increased cadmium sequestration in roots and improved iron homeostasis of
shoots. Plant Physiol 158:790–800. doi:10.1104/pp. 111.190983
Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars
for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588
Zhao S, Lian F, Duo L (2011) EDTA-assisted phytoextraction of heavy metals by turf grass from
municipal solid waste compost using permeable barriers and associated potential leaching risk.
Bioresour Technol 102:621–626