Page 67 - Plant-Based Remediation Processes
P. 67
3 Metal/Metalloid Phytoremediation: Ideas and Future 55
Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage
92:407–418
˛
Gasecka M, Mleczek M, Drzewiecka K, Magdziak Z, Rissmann I, Chadzinikolau T, Golin ´ski P
(2012) Physiological and morphological changes in Salix viminalis L. as a result of plant
exposure to copper. J Environ Sci Health A 47:548–557
Gendre D, Czernic P, Cone ´je ´ro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2006) TcYSL3, a
member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a
nicotianamine-Ni/Fe transporter. Plant J 49:1–15
Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374
Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER
TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endo-
plasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:
3500–3512
Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing
peptides of higher plants. Science 230:674–676
Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding
peptides of plants, are synthesized from glutathione by a specific γ -glutamylcysteine
dipeptidyl trans-peptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842
Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:
1–11
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kra ¨mer U
(2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication
of HMA4. Nature 453:391–395
Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants.
New Phytol 174:499–506
Haydon MJ, Kawachi M, Wirtz M, Stefan H, Hell R, Kra ¨mer U (2012) Vacuolar nicotianamine
has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis.
Plant Cell 24:724–737
Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P,
Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide
transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots.
Biochimie 88:1751–1765
Hossain MA, Piyatidaet P, da Silva JAT, Fijita M (2012) Molecular mechanism of heavy metal
toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen
species and methylglyoxal and in heavy metal chelation. J Bot. doi:10.1155/2012/872875
Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for
arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering
plants. Plant Cell 22:2045–2057
Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression
of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator
plants. Plant Cell 17:2089–2106
Ishimaru Y, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T,
Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required
for the long-distance transport of iron and manganese. Plant J 62:379–390. doi:10.1111/j.1365-
313X.2010.04158.x
Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and
molecular mechanisms. Bot Rev 75:339–364
Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth
promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against
saline stress. Acta Physiol Plant 33:797–802
Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin
homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 23:
2114–2120