Page 69 - Plant-Based Remediation Processes
P. 69
3 Metal/Metalloid Phytoremediation: Ideas and Future 57
Moreno I, Norambuena L, Maturana D, Toro M, Vergara C, Orellana A, Zurita-Silva A, Ordenes
2+
VR (2008) AtHMA1 is a thapsigargin-sensitive Ca /heavy metal pump. J Biol Chem
283:9633–9641. doi:10.1074/jbc.M800736200
Nada E, Ferjani BA, Ali R, Bechir BR, Imed M, Makki B (2007) Cadmium induced growth
inhibition and alteration of biochemical parameters in almond seedlings grown in solution
culture. Acta Physiol Planta 29:57–62
Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus
vulgaris L. seedlings by cadmium acetate. Photosynthesis 24:399–405
Pa ´l M, Szalai G, Horva ´th E, Janda T, Pa ´ldi E (2002) Effect of salicylic acid during heavy metal
stress. Acta Biol Szeged 46:119–120
Pa ´l M, Horva ´th E, Janda T, Pa ´ldi E, Szalai G (2005) Cadmium stimulates accumulation of salicylic
acid and its putative precursors in maize (Zea mays L.) plants. Physiol Planta 125:356–364
Pa ´l M, Horva ´th E, Janda T, Pa ´ldi E, Szalai G (2006) Physiological changes and defense
mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246
Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Rı ´o LA (2002)
Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant Physiol
Biochem 40:521–530
Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals
contaminated sediment. J Hazard Mater 161:633–640
Pich A, Scholz G (1993) The relationship between the activity of various iron-containing and iron-
free enzymes and the presence of nicotianamine in tomato seedlings. Physiol Planta 88:
172–178
Piechalak A, Tomaszewska B, Barałkiewicz D, Małecka A (2002) Accumulation and detoxifica-
tion of lead ions in legumes. Phytochemistry 60:153–162
Piechalak A, Tomaszewska B, Barałkiewicz D (2003) Enhancing phytoremediative ability of
Pisum sativum by EDTA application. Phytochemistry 64:1239–1251
Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and
homeostasis. New Phytol 167:733–742
Popova L, Maslenkova L, Yordanova R, Krantev A, Szalai G, Janda T (2008) Salicylic acid
protects photosynthesis against cadmium toxicity in pea plants. Gen Appl Plant Physiol 34:
133–148
Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM)
fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum
basilicum L.). Biol Fertil Soils 47:853–861
Rajkumar M, Noriharu A, Freitas H (2010) Endophytic bacteria and their potential to enhance
heavy metal phytoextraction. Chemosphere 77:153–160
Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:
439–463
Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM
(2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea
plants. J Plant Physiol 164:1346–1357
Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting
rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol
Biotechnol 34:635–648
Sanita ` di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot
41:105–130
Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for
manganese and cadmium uptake in rice. Plant Cell 24:2155–2167
Schaaf G (2005) A putative function for the Arabidopsis Fe–phytosiderophore transporter homo-
log AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774
Shah K, Dubey RS (1997) Effect of cadmium on proline accumulation and ribonuclease activity in
rice seedlings: role of proline as a possible enzyme protectant. Biol Planta 40:121–130