Page 68 - Plant-Based Remediation Processes
P. 68
56 M. Mleczek et al.
Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M (2009) A mutant strain
Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent
tolerance to excessive zinc. Plant Cell Physiol 50:1156–1170
Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maehima M, Lee Y (2009) AtHMA1
contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753.
doi:10.1111/j.1365-313X.2009.03818.x
Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in
phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv
27:799–810
Kova ´c ˇik J, Gru ´z J, Hedbavny J, Klejdus B, Strnad M (2009) Cadmium and nickel uptake are
differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem
57:9848–9855
Kra ¨mer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and
speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol
122:1343–1354
Krupa Z (1988) Cadmium-induced changes in the composition and structure of the light-
harvesting chlorophyll a/b protein complex II in radish cotyledons. Physiol Planta 73:518–524
Ku ¨pper H, Ku ¨pper F, Spiller M (1996) Environmental relevance of heavy metal-substituted
chlorophylls using the example of water plants. J Exp Bot 47:259–266
Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1
reveals its role in iron and nicotianamine seed loading of Fe and NA into seeds. Plant J
44:769–782
Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG,
Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8
functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell
22:1633–1646. doi:10.1105/tpc.110.075242
Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative
stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:
89–98
Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and
endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258
Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and
jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194
Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Transport and localization of lead in
root cells of Pisum sativum. Acta Physiol Planta 30:629–637
Małecka A, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and
antioxidative defense system in pea root cells treated with lead ions: the whole roots level.
Acta Physiol Planta 31:1053–1063
Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H,
Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes
involved in iron nutrition. Sci Rep 2:543
Memon AR, Schro ¨der P (2009) Implications of metal accumulation mechanisms to phyto-
remediation. Environ Sci Pollut Res 16:162–175
Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium
toxicity in barley seedlings. Plant Physiol 132:272–281
Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to
cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178
Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd
exposure in Brassica juncea L. Gene 363:151–158
Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.
Biotechnol Adv 29:645–653
Mleczek M, Kozłowska M, Kaczmarek Z, Magdziak Z, Golin ´ski P (2012) Cadmium and lead
uptake by Salix viminalis under modified Ca/Mg ratio. Ecotoxicology 20:158–165