Page 210 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 210
182 Polymer-based Nanocomposites for Energy and Environmental Applications
[254] Zidan HM. Electron spin resonance and ultraviolet spectral analysis of UV-irradiated
PVA films filled with MnCl 2 and CrF 3 . J Appl Polym Sci 2003;88:104–8.
[255] Saroj AL, Singh RK. Studies on ionic liquid 1-ethyl-3-methyl imidazolium ethylsulphate
complexed with PVA. Phase Trans 2011;84:231–42.
[256] Wang Z, Nelson JK, Miao J, Linhardt RJ, Schadler LS. Effect of high aspect ratio filler on
dielectric properties of polymer composites: a study on barium titanate fibers and
graphene platelets. IEEE Trans Dielectr Electr Insul 2012;19:960–7.
[257] Das-Gupta DK, Zhang S. PcC15b. Non-polar polymer/ferro and antiferroelectric ceramic
composite films for high energy storage capacitors. Ferroelectrics 1992;134:71–7.
[258] Rehrig PW, Park SE, Trolier-MsKinstry S, Messing GL, Jones B, Shrout TR. Piezoelec-
tric properties of zirconium-doped barium titanate single crystals grown by templated
grain growth. J Appl Phys 1999;86:1657–62.
[259] Weber U, Greuel G, Boettger U, Weber S, Hennings D, Waser R. Dielectric properties of
Ba(Zr,Ti)O 3 -based ferroelectrics for capacitor applications. J Am Ceram Soc
2001;84:759–66.
[260] Cramer N, Philofsky E, Kammerdiner L, Kalkur TS. Low temperature deposited Ba 0.96
Ca 0.04 Ti 0.84 Zr 0.16 O 3 thin films on Pt electrodes by radio frequency magnetron sputtering.
Appl Phys Lett 2004;84:771–3.
[261] Yu Z, Ang C, Guo R, Bhalla AS. Piezoelectric and strain properties of Ba(Ti 1 x Zr x )O 3
ceramics. J Appl Phys 2002;92:1489–93.
[262] Badapanda T, Senthil V, Anwar S, Cavalcante LS, Batista NC, Longo E. Structural and
dielectric properties of polyvinyl alcohol/barium zirconium titanate polymer–ceramic
composite. Curr Appl Phys 2013;13:1490–5.
[263] Mansky P, Liu Y, Huang E, Russell TP, Hawker C. Controlling polymer-surface inter-
actions with random copolymer brushes. Science 1997;275:1458–60.
[264] Ulman A. Formation and structure of self-assembled monolayers. Chem Rev
1996;96:1533–54.
[265] Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inor-
ganic nanoparticles for development of organic–inorganic nanocomposites—A review.
Prog Polym Sci 2013;38:1232–61.
[266] Pinson J. Aryl diazo-nium salts: new coupling agents in polymer and surface science.
Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 1–35.
[267] B elanger D, Pinson J. Electrografting: a powerful method for surface modification. Chem
Soc Rev 2011;40: 3995-3948.
[268] Pieters G, Prins LJ. Catalytic self-assembled monolayers on gold nanoparticles. New
J Chem 2012;36:1931–9.
[269] Chen K, Zhao Y, Yuan X. Chemical modification of silica: method, mechanism, and
application. Prog Chem 2013;25:95–104.
[270] Queff elec C, Petit M, Janvier P, Knight DA, Bujoli B. Surface modification using phos-
phonic acids and esters. Chem Rev 2012;112:3777–807.
[271] Barbey R, Lavanant L, Paripovic D, Sch€ uwer N, Sugnaux C, Tugulu S, et al. Polymer
brushes via surface-initiated controlled radical polymerization: synthesis, characteriza-
tion, properties, and applications. Chem Rev 2009;109: 5437-5427.
[272] Bousqueta A, Awadaa H, Hiornsb RC, Dagron-Lartigaua C, Billon L. Conjugated-
polymer grafting on inorganic and organic substrates: a new trend in organic electronic
materials. Prog Polym Sci 2014;39:1847–77.
[273] Fredin LA, Li Z, Lanagan MT, Ratner MA, Marks TJ. Substantial recoverable energy
storage in percolative metallic aluminum-polypropylene nanocomposites. Adv Funct
Mater 2013;23:3560–9.