Page 209 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 209
Polymer-based nanocomposites 181
[234] Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based
polymer composites. Prog Polym Sci 2010;35:1350–75.
[235] Li YC, Tjong SC, Li RKY. Dielectric properties of binary polyvinylidene fluoride/bar-
ium titanate nanocomposites and their nanographite doped hybrids. Express Polym Lett
2011;5:526–34.
[236] Wang D, Zhou T, Zha J-W, Zhao J, Shi C-Y, Dang Z-M. Functionalized graphene–
BaTiO 3 /ferroelectric polymer nanodielectric composites with high permittivity, low
dielectric loss, and low percolation threshold. J Mater Chem A 2013;1:6162–8.
[237] An L, Boggs SA, Calame JP. Energy storage in polymer films with high dielectric con-
stant fillers. IEEE Electr Insul Mag 2008;24:5–10.
[238] Lunkenheimer P, Bobnar V, Pronin AV, Ritus AI, Volkov AA, Loidl A. Origin of appar-
ent colossal dielectric constants. Phys Rev B: Condens Mater 2002;66:052105.
[239] Nelson JK, Fothergill JC. Internal charge behaviour of nanocomposites. Nanotechnology
2004;15:586–95.
[240] Tuncer E, Sauers I, James DR, Ellis AR, Duckworth RC. Nanodielectric system for cryo-
genic applications: barium titanate filled polyvinyl alcohol. IEEE Trans Dielectr Electr
Insul 2008;15:237–42.
[241] Gregory JK, Clary DC, Liu K, Brown MG, Saykally RJ. The water dipole moment in
water clusters. Science 1997;275:814–7.
[242] Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y. Evolution from graphite to
graphene elastomer composites. Prog Polym Sci 2014;39:749–80.
[243] Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S. Synergistic effect of
multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing
application. Soft Matter 2013;9:10343–53.
[244] Sadasivuni KK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, et al. Development
of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocompositesfor barrier,
dielectric and sensing applications. Mater Lett 2013;96:109–12.
[245] Kafy A, Sadasivuni KK, Kim H-C, Akther A, Kim J. Designing flexible energy and mem-
ory storage materials using cellulose modified graphene oxide nanocomposites. Phys
Chem Chem Phys 2015;17:5923.
[246] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, et al. Piezoelectricity of single-atomic-layer
MoS 2 for energy conversion and piezotronics. Nature 2014;514:470–4.
[247] Yan Y, Xia B, Ge X, Liu Z, Wang JY, Wang X. Ultrathin MoS 2 Nanoplates with rich
active sites as highly efficient catalyst for hydrogen evolution. ACS Appl Mater Inter-
faces 2013;5:12794–8.
[248] Hwang H, Kim H, Cho J. MoS 2 Nanoplates consisting of disordered graphene-like layers
for high rate lithium battery anode materials. Nano Lett 2011;11:4826–30.
[249] Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, et al. MoS 2
and WS 2 analogues of graphene. Angew Chem 2010;122:4153–6.
[250] Rao CNR, Nag A. Inorganic analogues of graphene. Eur J Inorg Chem
2010;2010:4244–50.
[251] Chang K, Chen W. L-Cysteine-assisted synthesis of layered MoS 2 /graphene composites
with excellent electrochemical performances for lithium ion batteries. ACS Nano
2011;5:4720–8.
[252] Santos EJ, Kaxiras E. Electrically driven tuning of the dielectric constant in MoS 2 layers.
ACS Nano 2013;7:10741–6.
[253] Jia Q, Huang X, Wang G, Diao J, Jiang P. MoS 2 Nanosheet superstructures based poly-
mer composites for high dielectric and electrical energy storage applications. J Phys
Chem C 2016;120:10206–14.