Page 204 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 204
176 Polymer-based Nanocomposites for Energy and Environmental Applications
[129] Dang Z-M, Yuan J-K, Yao S-H, Liao R-J. Flexible nanodielectric materials with high
permittivity for power energy storage. Adv Mater 2013;25:6334–65.
[130] Dang Z-M. Tjong S-C, editor. Nanocrystalline Materials: Their Synthesis-Structure-
Property Relationships and Applications. 2nd ed. Waltham, MA: Elsevier; 2014.
p. 305–33.
[131] Wang J, Guan F, Cui L, Pan J, Wang Q, Zhu L. Achieving high electric energy storage in
a polymer nanocomposite at low filling ratios using a highly polarizable Phthalocyanine
interphase. J Polym Sci B Polym Phys 2014;52:1669–80.
[132] Ahmadpoor P, Nateri AS, Motaghitalab V. The optical properties of PVA/TiO 2 compos-
ite nanofibers. J Appl Polym Sci 2013;130:78–85.
[133] Dekker AJ. Everitt WL, editor. Electrical engineering materials. 1st ed. Englewood
Cliffs, NJ: Prentice-Hall, Inc.; 1959. p. 62–78.
[134] Kasap 3rd SO; McGraw-Hill, Inc.: Avenue of the Americas, NY 2006; 583 84.
[135] Marz M, Schletz A, Eckardt B, Egelkraut S, Rauh H. 6th international conference on inte-
grated power electronics systems(CIPS), Nuremberg, Germany; Mar 16–18, 2010; 1–10.
[136] Dekker AJ. In: Everitt WL, editor. Electrical engineering materials. 1st ed. Englewood
Cliffs, NJ: Prentice-Hall, Inc.; 1959. p. 23–61.
[137] Chung DDL; 1st ed., Derby B, Ed.; Composite Materials: Functional Materials for
Modern Technologies, Springer Verlag: London, 2004; 125 166.
[138] Kao KC. Electric polarization and relaxation. In: Dielectric phenomena in solids. San
Diego: Academic Press; 2004. p. 41–114.
[139] Zhu L. Exploring strategies for high dielectric constant and low loss polymer dielectrics.
J Phys Chem Lett 2014;5:3677–87.
[140] Carter CB, Norton MG. Ceramic materials science and engineering. 1st ed. New York:
Springer Verlag; 2007. p. 556–74.
[141] Kittel C, Johnson S, McFadden P, Eds.; John Wiley & Sons, Inc., USA, 2005; 453 485.
[142] B€ ottcher CJF, Bordewijk P. Dielectrics in time-dependent fields. 2nd ed. Vol. 2.
Amsterdam, Netherlands: Elsevier; 19781–44.
[143] Hummel RE. In electronic properties of materials. 3rd ed. Springer Verlag: New York;
2001. p. 166–93.
[144] B€ ottcher CJF, Bordewijk P. Dielectrics in time-dependent fields. 2nd ed. Vol. 2.
Amsterdam, Netherlands: Elsevier; 1978. p. 285–313.
[145] Wang CC, Pilania G, Boggs SA, Kumar S, Breneman C, Ramprasad R. Computational
strategies for polymer dielectrics design. Polymer 2014;55:979–88.
[146] Tuncer E, Serdyuk YV, Gubanski SM. Dielectric mixtures: electrical properties and
modeling. IEEE Trans Dielectr Electr Insul 2002;9:809–28.
[147] Fothergill JC. Nelson JK, editor. Dielectric polymer nanocomposites. USA: Springer
Verlag; 2010. p. 197–228.
[148] Davies DK. Seanor DA, editor. Electrical properties of polymers. London: Academic
Press; 1982. p. 285–318.
[149] Mackey M, Schuele DE, Zhu L, Flandin L, Wolak MA, Shirk JS. Reduction of dielectric
hysteresis in multilayered films via nanoconfinement. Macromolecules
2012;45:1954–62.
[150] Zhou Z, Carr J, Mackey M, Yin K, Schuele D, Zhu L, et al. Interphase/interface modi-
fication on the dielectric properties of polycarbonate/poly(vinylidene fluoride-co-
hexafluoropropylene) multilayer films for high-energy density capacitors. J Polym Sci
B Polym Phys 2013;51:978–91.
[151] Blythe T, Bloor DM. Electrical properties of polymers. 2nd ed. New York: Cambridge
University Press; 2005. p. 58–110.