Page 202 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 202
174 Polymer-based Nanocomposites for Energy and Environmental Applications
[90] Thakur VK, Vennerberg D, Madbouly SA, Kessler MR. Bio-inspired green surface func-
tionalization of PMMA for multifunctional capacitors. RSC Adv 2014;4:6677–84.
[91] Gross S, Camozzo D, Di Noto V, Armelao L, Tondello E. PMMA: a key macromolecular
component for dielectric low-J hybrid inorganic–organic polymer films. Eur Polym J
2007;43:673–96.
[92] Molberg M, Crespy D, Rupper P, N€ uesch F, Ma ˚nson JAE, L€ owe C, et al. High breakdown
field dielectric elastomer actuators using encapsulated polyaniline as high dielectric con-
stant filler. Adv Funct Mater 2010;20:3280–91.
[93] Shen Y, Liang G, Yuan L, Qiang Z, Gu A. Unique Li 0.3 Ti 0.02 Ni 0.68 O-carbon nanotube
hybrids: synthesis and their epoxy resin composites with remarkably higher dielectric
constant and lower dielectric loss. J Alloys Compd 2014;602:16–25.
[94] Lovinger AJ, Bassett DC. Poly(vinylidene fluoride). Netherlands: Springer; 1982.
p. 195–273.
[95] Raju GG, Marcel D. Dielectrics in electric fields. New York: Marcel Dekker, Inc; 2003.
[96] Bayramol DV, Shah T, Soin N, Siores E, Mittal V. Preparation and characterization of
PVDF-based nanocomposites. Germany: Wiley-VCH Verlag GmbH & Co.; 2015. p.
131–44.
[97] Huang X, Jiang P, Tanaka T. A review of dielectric polymer composites with high ther-
mal conductivity. IEEE Electron Insul Mag 2011;27:8 16.
[98] Mohamed AT. Experimental enhancement for dielectric strength of polyethylene insu-
lation materials using cost-fewer nanoparticles. Int J Electr Power 2015; 64: 469–75.
[99] Raju GG. Appendix 3: selected properties of insulating materials. In: Dielectrics in elec-
tric fields. New York: Marcel Dekker, Inc.; 2003. p. 561–6.
[100] Sharma V, Wang C, Lorenzini RG, Ma R, Zhu Q, Sinkovits DW, et al. Rational design of
all organic polymer dielectrics. Nat Commun 2014;5:4845.
[101] Mitchell BS. Appendix 5: thermal conductivities of selected materials. In: An introduc-
tion to materials engineering and science. Hoboken, NJ: John Wiley & Sons, Inc.; 2004.
p. 874–9.
[102] Hardy CG, Islam MS, Gonzalez-Delozier D, Morgan JE, Cash B, Benicewicz BC, et al.
Converting an electrical insulator into a dielectric capacitor: end-capping polystyrene
with oligoaniline. Chem Mater 2013;25:799–807.
[103] Hu P, Shen Y, Guan Y, Zhang X, Lin Y, Zhang Q, et al. Topological-structure modulated
polymer nanocomposites exhibiting highly enhanced dielectric strength and energy den-
sity. Adv Funct Mater 2014;24:3172–8.
[104] Islam MS, Qiao Y, Tang C, Ploehn HJ. Terthiophene-containing copolymers and homo-
polymer blends as high-performance dielectric materials. ACS Appl Mater Interfaces
2015;7:1967–77.
[105] Coburn JC, Boyd RH. Dielectric relaxation in poly(ethylene terephthalate).
Macromolecules 1986;19:2238–45.
[106] Gao L, He J, Hu J, Li Y. Large enhancement in polarization response and energy storage
properties of poly(vinylidene fluoride) by improving the interface effect in
nanocomposites. J Phys Chem C 2014;118:831–8.
[107] Li W, Meng Q, Zheng Y, Zhang Z, Xia W, Xu Z. Electric energy storage properties of
poly(vinylidene fluoride). Appl Phys Lett 2010;96:192905.
[108] Chen T, Zhao Y, Pan L, Lin M. Insight into effect of hydrothermal preparation process of
nanofillers on dielectric, creep and electromechanical performance of polyurethane
dielectric elastomer/reduced graphene oxide composites. J Mater Sci Mater Electron
2015;26:10164–71.
[109] Das AK, Sinha S, Mukherjee A, Meikap AK. Enhanced dielectric properties in polyvinyl
alcohol – multiwall carbon nanotube composites. Mater Chem Phys 2015;167:286–94.