Page 198 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 198
170 Polymer-based Nanocomposites for Energy and Environmental Applications
[18] Jameson JR, Griffin PB, Agah A, Plummer JD, Kim HS, Taylor DV, et al. Problems
with metal-oxide high-ĸ dielectrics due to l/t dielectric relaxation current in amor-
phous materials. Electron devices meeting. IEDM’03 technical digest. IEEE Int
2003;91–4.
[19] Peacock PW, Robertson J. Band offsets and Schottky barrier heights of high dielectric
constant oxides. J Appl Phys 2002;92:4712–21.
[20] Schlom DG, Haeni JH. A thermodynamic approach to selecting alternative gate dielec-
trics. MRS Bull 2002;27:198–204.
[21] Zhu WJ, Tamagawa T, Gibson M, Furukawa T, Ma TP. Effect of Al inclusion in HfO 2 on
the physical and electrical properties of the dielectrics. IEEE Electron Device Lett
2002;23:649–51.
[22] Joo MS, Cho BJ, Yeo CC, Wu N, Yu H, Zhu C, et al. Dependence of chemical compo-
sition ratio on electrical properties of HfO 2 –Al 2 O 3 gate dielectric. Jpn J Appl Phys
2003;42:L220–2.
[23] Cho MH, Roh YS, Whang CN, Jeong K, Choi HJ, Nam SW, et al. Dielectric character-
istics of Al 2 O 3 –HfO 2 nanolaminates on Si(100). Appl Phys Lett 2002;81:1071–3.
[24] Chang HS, Jeon S, Hwang H, Moon DW. Excellent thermal stability of Al 2 O 3 /ZrO 2 /
Al 2 O 3 stack structure for metal–oxide–semiconductor gate dielectrics application. Appl
Phys Lett 2002;80:3385–7.
[25] Jeon S, Yang H, Park DG, Hwang H. Electrical and structural properties of nanolaminate
(Al 2 O 3 /ZrO 2 /Al 2 O 3 ) for metal oxide semiconductor gate dielectric applications. Jpn
J Appl Phys 2002;41:2390–3.
[26] Cheng L, Zheng L, Li G, Zeng J, Yin Q. Influence of particle surface properties on the
dielectric behaviour of silica/epoxy nanocomposites. Phys B 2008;403:2584–9.
[27] Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, et al. A dielectric polymer with high
electric energy density and fast discharge speed. Science 2006;313:334–6.
[28] Polizos G, Tomer V, Manias E, Randall CA. Epoxy-based nanocomposites for electrical
energy storage. II: Nanocomposites with nanofillers of reactive montmorillonite
covalentlybonded with barium titanate. J Appl Phys 2010;108:074117-10.
[29] Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Goyal A, et al. Enhancement
of dielectric strength in nanocomposites. Nanotechnology 2007;18:325704–8.
[30] Xiaojun Y, Zhimin Y, Changhui M, Jun D. Dependence of dielectric properties on BT
particle size in EPBT composites. Rare Metals 2006;25:250–4.
[31] Li JY, Zhang L, Ducharme S. Electric energy density of dielectric nanocomposites. Appl
Phys Lett 2007;90:132901–3.
[32] Li J, Seok S, Chu B, Dogan F, Zhang Q, Wang Q. Nanocomposites of ferroelectric poly-
mers with TiO 2 nanoparticles exhibiting significantly enhanced electrical energy density.
Adv Mater 2009;21:217–21.
[33] Smith RC, Liang C, Landry M, Nelson JK, Schadler LS. The mechanisms leading to the
useful electrical properties of polymer Nanodielectrics. IEEE Trans Dielectr Electr Insul
2008;15:187–96.
[34] Tanaka T, Montanari GC, Mulhaupt R. Polymer nanocomposites as dielectrics and elec-
trical insulation-perspectives for processing technologies, material characterization and
future applications. IEEE Trans Dielectr Electr Insul 2004;11:763–84.
[35] Lewis TJJ. Interfaces: nanometric dielectrics. Phys D: Appl Phys 2005;38:202–12.
[36] Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, et al. Polymer
nanocomposite dielectrics – the role of the Interface. IEEE Trans Dielectr Electr Insul
2005;12:629–43.
[37] Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Aytug T, et al. Electrical
properties of epoxy resin based nano-composites. Nanotechnology 2007;18:25703–8.