Page 201 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 201

Polymer-based nanocomposites                                      173


            [73] Xie LY, Huang XY, Li B-W, Zhi CY, Tanaka T, Jiang PK. Core–satellite Ag@BaTiO 3
                nanoassemblies for fabrication of polymer nanocomposites with high discharged energy
                density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys
                2013;15:17560–9.
            [74] Fredin LA, Li Z, Ratner MA, Lanagan MT, Marks TJ. Enhanced energy storage and
                suppressed dielectric loss in oxide core–shell–polyolefin nanocomposites by moderating
                internal surface area and increasing shell thickness. Adv Mater 2012;24:5946–53.
            [75] Xie L, Huang X, Huang Y, Yang K, Jiang P. Core@double-shell structured BaTiO 3
                polymer nanocomposites with high dielectric constant and low dielectric loss for energy
                storage application. J Phys Chem C 2013;117:22525–37.
            [76] Li Y, Krentz TM, Wang L, Benicewicz BC, Schadler LS. Ligand engineering of polymer
                nanocomposites: from the simple to the complex. ACS Appl Mater Interfaces
                2014;6:6005–21.
            [77] Fang L, Wu C, Qian R, Xie L, Yang K, Jiang P. Nano-micro structure of functionalized
                boron nitride and aluminum oxide for epoxy composites with enhanced thermal conduc-
                tivity and breakdown strength. RSC Adv 2014;4:21010–7.
            [78] Alam MA, Azarian MH, Pecht MG. Modeling the electrical conduction in epoxy-BaTiO 3
                nanocomposites. J Electron Mater 2013;42:1101–7.
            [79] Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C-W. Improving the dielectric constants and
                breakdown strength of polymer composites: effects of the shape of the BaTiO 3
                nanoinclusions,  surface  modification  and  polymer  matrix.  J  Mater  Chem
                2012;22:16491–8.
            [80] Yu J, Huo R, Wu C, Wu X, Wang G, Jiang P. Influence of Interface structure on dielectric
                properties of epoxy/alumina nanocomposites. Macromol Res 2012;20:816–26.
            [81] Patsidis  AC,  Kalaitzidou  K,  Psarras  GC.  Graphite  nanoplatelets/polymer
                nanocomposites: thermomechanical, dielectric, and functional behaviour. J Therm Anal
                Calorim 2014;116:41–9.
            [82] Wang T, Liang G, Yuan L, Gu A. Unique hybridized graphene and its high dielectric
                constant composites with enhanced frequency stability, low dielectric loss and percola-
                tion threshold. Carbon 2014;77:920–32.
            [83] Kuzhir P, Paddubskaya A, Plyushch A, Volynets N, Maksimenko S, Macutkevic J, et al.
                Epoxy composites filled with high surface area-carbon fillers: optimization of electro-
                magnetic shielding, electrical, mechanical, and thermal properties. J Appl Phys
                2013;114:164304.
            [84] Liu J, Tian G, Qi S, Wu Z, Wu D. Enhanced dielectric permittivity of a flexible three-
                phase polyimide–graphene–BaTiO 3 composite material. Mater Lett 2014;124:117–9.
            [85] Ding Y, Wu Q, Zhao D, Ye W, Hanif M, Hou H. Flexible PI/BaTiO 3 dielectric
                nanocomposite fabricated by combining electrospinning and electrospraying. Eur Polym
                J 2013;49:2567–71.
            [86] Fan B-H, Zha J-W, Wang D-R, Zhao J, Dang Z-M. Experimental study and theoretical
                prediction of dielectric permittivity in BaTiO 3 /polyimide nanocomposite films. Appl
                Phys Lett 2012;100:092903.
            [87] Zhang Y-H, Dang Z-M, Xin JH, Daoud WA, Ji J-H, Liu Y, et al. Dielectric properties of
                polyimide-mica hybrid films. Macromol Rapid Commun 2005;26:1473–7.
            [88] Zhang Y-H, Yu L, Zhao L-H, Tong W-S, Huang H-T, Ke S-M, et al. Dielectric and ther-
                mal properties of polyimide–poly(ethylene oxide) nanofoamed films. J Electron Mater
                2012;41:2281–5.
            [89] Paniagua SA, Kim Y, Henry K, Kumar R, Perry JW, Marder SR. Surface-initiated poly-
                merization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl
                Mater Interfaces 2014;6:3477–82.
   196   197   198   199   200   201   202   203   204   205   206