Page 201 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 201
Polymer-based nanocomposites 173
[73] Xie LY, Huang XY, Li B-W, Zhi CY, Tanaka T, Jiang PK. Core–satellite Ag@BaTiO 3
nanoassemblies for fabrication of polymer nanocomposites with high discharged energy
density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys
2013;15:17560–9.
[74] Fredin LA, Li Z, Ratner MA, Lanagan MT, Marks TJ. Enhanced energy storage and
suppressed dielectric loss in oxide core–shell–polyolefin nanocomposites by moderating
internal surface area and increasing shell thickness. Adv Mater 2012;24:5946–53.
[75] Xie L, Huang X, Huang Y, Yang K, Jiang P. Core@double-shell structured BaTiO 3
polymer nanocomposites with high dielectric constant and low dielectric loss for energy
storage application. J Phys Chem C 2013;117:22525–37.
[76] Li Y, Krentz TM, Wang L, Benicewicz BC, Schadler LS. Ligand engineering of polymer
nanocomposites: from the simple to the complex. ACS Appl Mater Interfaces
2014;6:6005–21.
[77] Fang L, Wu C, Qian R, Xie L, Yang K, Jiang P. Nano-micro structure of functionalized
boron nitride and aluminum oxide for epoxy composites with enhanced thermal conduc-
tivity and breakdown strength. RSC Adv 2014;4:21010–7.
[78] Alam MA, Azarian MH, Pecht MG. Modeling the electrical conduction in epoxy-BaTiO 3
nanocomposites. J Electron Mater 2013;42:1101–7.
[79] Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C-W. Improving the dielectric constants and
breakdown strength of polymer composites: effects of the shape of the BaTiO 3
nanoinclusions, surface modification and polymer matrix. J Mater Chem
2012;22:16491–8.
[80] Yu J, Huo R, Wu C, Wu X, Wang G, Jiang P. Influence of Interface structure on dielectric
properties of epoxy/alumina nanocomposites. Macromol Res 2012;20:816–26.
[81] Patsidis AC, Kalaitzidou K, Psarras GC. Graphite nanoplatelets/polymer
nanocomposites: thermomechanical, dielectric, and functional behaviour. J Therm Anal
Calorim 2014;116:41–9.
[82] Wang T, Liang G, Yuan L, Gu A. Unique hybridized graphene and its high dielectric
constant composites with enhanced frequency stability, low dielectric loss and percola-
tion threshold. Carbon 2014;77:920–32.
[83] Kuzhir P, Paddubskaya A, Plyushch A, Volynets N, Maksimenko S, Macutkevic J, et al.
Epoxy composites filled with high surface area-carbon fillers: optimization of electro-
magnetic shielding, electrical, mechanical, and thermal properties. J Appl Phys
2013;114:164304.
[84] Liu J, Tian G, Qi S, Wu Z, Wu D. Enhanced dielectric permittivity of a flexible three-
phase polyimide–graphene–BaTiO 3 composite material. Mater Lett 2014;124:117–9.
[85] Ding Y, Wu Q, Zhao D, Ye W, Hanif M, Hou H. Flexible PI/BaTiO 3 dielectric
nanocomposite fabricated by combining electrospinning and electrospraying. Eur Polym
J 2013;49:2567–71.
[86] Fan B-H, Zha J-W, Wang D-R, Zhao J, Dang Z-M. Experimental study and theoretical
prediction of dielectric permittivity in BaTiO 3 /polyimide nanocomposite films. Appl
Phys Lett 2012;100:092903.
[87] Zhang Y-H, Dang Z-M, Xin JH, Daoud WA, Ji J-H, Liu Y, et al. Dielectric properties of
polyimide-mica hybrid films. Macromol Rapid Commun 2005;26:1473–7.
[88] Zhang Y-H, Yu L, Zhao L-H, Tong W-S, Huang H-T, Ke S-M, et al. Dielectric and ther-
mal properties of polyimide–poly(ethylene oxide) nanofoamed films. J Electron Mater
2012;41:2281–5.
[89] Paniagua SA, Kim Y, Henry K, Kumar R, Perry JW, Marder SR. Surface-initiated poly-
merization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl
Mater Interfaces 2014;6:3477–82.