Page 199 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 199
Polymer-based nanocomposites 171
[38] Schuman TP, Siddabattuni S, Cox O, Dogan F. Improved dielectric breakdown strength
of covalently-bonded interface polymer–particle nanocomposites. Compos Interfaces
2010;17:719–31.
[39] Siddabattuni S, Schuman TP, Dogan F. Improved polymer nanocomposite dielectric
breakdown performance through barium titanate to epoxy interface control. Mater Sci
Eng B 2011;176:1422–9.
[40] Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, et al. Phosphonic
acid-modified barium titanate polymer nanocomposites with high permittivity and
dielectric strength. Adv Mater 2007;19:1001–5.
[41] Ma D, Hugener TA, Siegel RW, Christenson A, Martensson E, Onneby C, et al. Influence
of nanoparticle surface modification on the electrical behaviour of polyethylene
nanocomposites. Nanotechnology 2005;16:724–31.
[42] Ma D, Siegel RW, Hong JI, Schadler LS. Influence of nanoparticle surfaces on the elec-
trical breakdown strength of nanoparticle-filled low-density polyethylene. J Mater Res
2004;19:857–63.
[43] Siddabattuni S, Schuman TP, Petrovsky V, Dogan F. Impedance analysis of dielectric
nanoparticles enabled via a self-assembled monolayer. J Am Ceram Soc
2013;96:1490–6.
[44] Siddabattuni S, Schuman TP, Dogan F. Dielectric properties of polymer particle
nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Inter-
faces 2013;5:1917–27.
[45] Li J, Claude J, Norena-Franco LE, Il Seok S, Wang Q. Electrical energy storage in fer-
roelectric polymer nanocomposites containing surface-functionalized BaTiO 3
nanoparticles. Chem Mater 2008;20:6304–6.
[46] Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, HS X, et al. An all-organic composite actu-
ator material with a high dielectric constant. Nature 2002;419:284–7.
[47] Sarjeant WJ, Zirnheld J, MacDougall FW. Capacitors. IEEE Trans Plasma Sci
1998;26:1368.
[48] Nan CW, Shen Y, Ma J. Physical properties of composites near percolation. Annu Rev
Mater Res 2010;40:131–51.
[49] Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT, Ratner MA, et al. In situ cat-
alytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric
and energy storage properties of high-permittivity metal oxide nanocomposites. Chem
Mater 2010;22:5154–64.
[50] Arbatti M, Shan XB, Cheng ZY. Ceramic–polymer composites with high dielectric con-
stant. Adv Mater 2007;19:1369–72.
[51] Bai Y, Cheng ZY, Bharti V, HS X, Zhang QM. High-dielectric-constant ceramic-powder
polymer composites. Appl Phys Lett 2000;76:3804–6.
[52] Tang HX, Lin YR, Andrews C, Sodano HA. Nanocomposites with increased energy den-
sity through high aspect ratio PZT nanowires. Nanotechnology 2011;22:015702–9.
[53] Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ. Nanoparticle,
size, shape, and interfacial effects on leakage current density, permittivity, and break-
down strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem
Mater 2010;22:1567–78.
[54] Tomer V, Polizos G, Randall CA, Manias E. Polyethylene nanocomposite dielectrics:
implications of nanofiller orientation on high field properties and energy storage.
J Appl Phys 2011;109:074113.
[55] Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, et al. High energy
density nanocomposites based on surface-modified BaTiO 3 and a ferroelectric polymer.
ACS Nano 2009;3:2581–92.