Page 199 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 199

Polymer-based nanocomposites                                      171

            [38] Schuman TP, Siddabattuni S, Cox O, Dogan F. Improved dielectric breakdown strength
                of covalently-bonded interface polymer–particle nanocomposites. Compos Interfaces
                2010;17:719–31.
            [39] Siddabattuni S, Schuman TP, Dogan F. Improved polymer nanocomposite dielectric
                breakdown performance through barium titanate to epoxy interface control. Mater Sci
                Eng B 2011;176:1422–9.
            [40] Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, et al. Phosphonic
                acid-modified barium titanate polymer nanocomposites with high permittivity and
                dielectric strength. Adv Mater 2007;19:1001–5.
            [41] Ma D, Hugener TA, Siegel RW, Christenson A, Martensson E, Onneby C, et al. Influence
                of nanoparticle surface modification on the electrical behaviour of polyethylene
                nanocomposites. Nanotechnology 2005;16:724–31.
            [42] Ma D, Siegel RW, Hong JI, Schadler LS. Influence of nanoparticle surfaces on the elec-
                trical breakdown strength of nanoparticle-filled low-density polyethylene. J Mater Res
                2004;19:857–63.
            [43] Siddabattuni S, Schuman TP, Petrovsky V, Dogan F. Impedance analysis of dielectric
                nanoparticles enabled via a self-assembled monolayer. J Am Ceram Soc
                2013;96:1490–6.
            [44] Siddabattuni S, Schuman TP, Dogan F. Dielectric properties of polymer particle
                nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Inter-
                faces 2013;5:1917–27.
            [45] Li J, Claude J, Norena-Franco LE, Il Seok S, Wang Q. Electrical energy storage in fer-
                roelectric  polymer  nanocomposites  containing  surface-functionalized  BaTiO 3
                nanoparticles. Chem Mater 2008;20:6304–6.
            [46] Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, HS X, et al. An all-organic composite actu-
                ator material with a high dielectric constant. Nature 2002;419:284–7.
            [47] Sarjeant WJ, Zirnheld J, MacDougall FW. Capacitors. IEEE Trans Plasma Sci
                1998;26:1368.
            [48] Nan CW, Shen Y, Ma J. Physical properties of composites near percolation. Annu Rev
                Mater Res 2010;40:131–51.
            [49] Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT, Ratner MA, et al. In situ cat-
                alytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric
                and energy storage properties of high-permittivity metal oxide nanocomposites. Chem
                Mater 2010;22:5154–64.
            [50] Arbatti M, Shan XB, Cheng ZY. Ceramic–polymer composites with high dielectric con-
                stant. Adv Mater 2007;19:1369–72.
            [51] Bai Y, Cheng ZY, Bharti V, HS X, Zhang QM. High-dielectric-constant ceramic-powder
                polymer composites. Appl Phys Lett 2000;76:3804–6.
            [52] Tang HX, Lin YR, Andrews C, Sodano HA. Nanocomposites with increased energy den-
                sity through high aspect ratio PZT nanowires. Nanotechnology 2011;22:015702–9.
            [53] Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ. Nanoparticle,
                size, shape, and interfacial effects on leakage current density, permittivity, and break-
                down strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem
                Mater 2010;22:1567–78.
            [54] Tomer V, Polizos G, Randall CA, Manias E. Polyethylene nanocomposite dielectrics:
                implications of nanofiller orientation on high field properties and energy storage.
                J Appl Phys 2011;109:074113.
            [55] Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, et al. High energy
                density nanocomposites based on surface-modified BaTiO 3 and a ferroelectric polymer.
                ACS Nano 2009;3:2581–92.
   194   195   196   197   198   199   200   201   202   203   204