Page 203 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 203
Polymer-based nanocomposites 175
[110] Tuncer E, Sauers I, James DR, Ellis AR, Duckworth RC. Nanodielectric system for cryo-
genic applications: barium titanate filled polyvinyl alcohol. IEEE Trans Dielectr Electr
Insul 2008;15:236–42.
[111] Basantakumar Sharma H, Sarma HNK, Mansingh A. Ferroelectric and dielectric prop-
erties of sol–gel processed barium titanate ceramics and thin films. J Mater Sci
1999;34:1385–90.
[112] Schomann KD. Electric breakdown of barium titanate: a model. Appl Phys
1975;6:89–92.
[113] Hilton AD, Ricketts BW. Dielectric properties of Ba 1–x Sr x TiO 3 ceramics. J Phys D Appl
Phys 1996;29:1321–5.
[114] Hoshina T. Size effect of barium titanate: fine particles and ceramics. J Ceram Soc Jpn
2013;121:156–61.
[115] Schumacher B, Geßwein H, Haußelt J, Hanemann T. Temperature treatment of nano-
scaled barium titanate filler to improve the dielectric properties of high-k polymer based
composites. Microelectron Eng 2010;87:1978–83.
[116] Padalia D, Bisht G, Johri UC, Asokan K. Fabrication and characterization of cerium
doped barium titanate/PMMA nanocomposites. Solid State Sci 2013;19:122–9.
[117] Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R. Preparation, char-
acterization and dielectric properties of temperature stable SrTiO 3 /PEEK composites for
microwave substrate applications. Compos Sci Technol 2008;68:106–12.
[118] Xiang F, Wang H, Yao X. Preparation and dielectric properties of bismuth-based dielec-
tric/PTFE microwave composites. J Eur Ceram Soc 2006;26:1999–2002.
[119] Hu Y, Zhang Y, Liu H, Zhou D. Microwave dielectric properties of PTFE/CaTiO 3 poly-
mer ceramic composites. Ceram Int 2011;37:1609–13.
[120] Kong LB, Zhang TS, Ma J, Boey F. Progress in synthesis of ferroelectric ceramic
materials via high-energy mechanochemical technique. Prog Mater Sci 2008;53:
207–22.
[121] Piskunov S, Heifets E, Eglitis RI, Borstel G. Bulk properties and electronic structure of
SrTiO 3 , BaTiO 3 , PbTiO 3 perovskites: an ab initio HF/DFT study. Comput Mater Sci
2004;29:165–78.
[122] Tian M, Wei Z, Zan X, Zhang L, Zhang J, Ma Q, et al. Thermally expanded graphene
nanoplates/polydimethylsiloxane composites with high dielectric constant, low dielectric
loss and improved actuated strain. Compos Sci Technol 2014;99:37–44.
¸
[123] El Hasnaoui M, Triki A, Graca MPF, Achour ME, Costa LC, Arous M. Electrical con-
ductivity studies on carbon black loaded ethylene butylacrylate polymer composites.
J Non-Cryst Solids 2012;358:2810–5.
[124] Theravalappil R, Svoboda P, Vilcakova J, Poongavalappil S, Slobodian P, Svobodova D.
A comparative study on the electrical, thermal and mechanical properties of ethylene–
octene copolymer based composites with carbon fillers. Mater Eng 2014;60:458–67.
[125] Tjong SC, Tjong SC, Mai Y-W, editors. Physical Properties and Applications of Polymer
Nanocomposites. Cambridge U.K.: Woodhead Publishing Limited; 2010. p. 495–528.
[126] Daugaard AE, Jankova K, Marı ´n JMR, Bøgelund J, Hvilsted S. Poly(ethylene-co-butyl-
ene) functionalized multi walled carbon nanotubes applied in polypropylene
nanocomposites. Eur Polym J 2012;48:743–50.
[127] Chang J, Liang G, Gu A, Cai S, Yuan L. The production of carbon nanotube/epoxy com-
posites with a very high dielectric constant and low dielectric loss by microwave curing.
Carbon 2012;50:689–98.
[128] Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q. Progress on the morphological control of
conductive network in conductive polymer composites and the use as electroactive
multifunctional materials. Prog Polym Sci 2014;39:627–55.