Page 205 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 205
Polymer-based nanocomposites 177
[152] Chanmal C. Jyoti J. In: Mittal V, editor. Characterization techniques for polymer
nanocomposites. Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 167–84.
[153] Prateek Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based
nanocomposites for high energy density capacitors: synthesis, dielectric properties,
and future aspects. Chem Rev 2016;116:4260–317.
[154] Vorob’ev AA. Excitation and electrical breakdown of solid insulators. Russ Phys J
1980;23:382–6.
[155] Bunget I, Popescu M. Physics of solid dielectrics. 19:Amsterdam, The Netherlands:
Elsevier; 1984.
[156] Kuffel E, Zaengl WS. High voltage engineering fundamental. New York, NY, USA: Per-
gamon; 1984.
[157] Artbauer J. Electric strength of polymers. J Phys D Appl Phys 1996;29:446–56.
[158] Sabuni MH, Nelson JK. The effects of plasticizer on the electric strength of polystyrene.
J Mater Sci 1979;14:2791–6.
[159] Wiacek KJ. Synthesis and electrical properties of fluorenyl polyesters incorporating dia-
mond fragments [MS Thesis]. Dayton, OH, USA: Wright State University; 2007.
[160] Hosier IL, Vaughan AS, Swingler SG. The effects of measuring technique and sample
preparation on the breakdown strength of polyethlyene. IEEE Trans Dielectr Electr Insul
2002;9:353–61.
[161] Schneuwly A, Groning P, Schlapbach L, Irrang C, Vogt J. Breakdown behavior of oil-
impregnated polypropylene as dielectric in film capacitors. IEEE Trans Dielectr Electr
Insul 1998;5:862–8.
[162] Job AE, Alves N, Zanin M, Ueki MM, Mattoso LH, Teruya MY, et al. Increasing the
dielectric breakdown strength of poly(ethylene terephthalate) films using a coated poly-
aniline layer. J Phys D Appl Phys 2003;36:1414–7.
[163] Ieda M. Dielectric breakdown process of polymers. IEEE Trans Dielectr Electr Insul
1980;15:206–24.
[164] Tuncer E, Rondinone AJ, Woodward J, Sauers I, James DR, Ellis AR. Cobalt iron-oxide
nanoparticle modified poly(methyl methacrylate) nanodielectrics. Appl Phys A Mater
Sci Process 2009;94:843–52.
[165] Shen Y, Lin Y, Li M, Nan CW. High dielectric performance of polymer composite films
induced by a percolating Interparticle barrier layer. Adv Mater 2007;19:1418–22.
[166] Chen G, Davies AE. The influence of defects on the short-term breakdown characteristics
and long-term dc performance of LDPE insulation. IEEE Trans Dielectr Electr Insul
2000;7:401–7.
[167] Lewis TJ. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE
Trans Dielectr Electr Insul 2004;11:739–53.
[168] Lewis TJ. Nanometric dielectrics. IEEE Trans Dielectr Electr Insul 1994;1:812–25.
[169] Tanaka T. Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr
Electr Insul 2005;12:914–28.
[170] Pitsa D, Danikas MG. Interfaces features in polymer nanocomposites: a review of pro-
posed models. Nano 2011;06:497–508.
[171] Danikas MG, Bairaktari A, Sarathi R, Ghani ABBA. A review of two nanocomposite
insulating materials models: Lewis’ contribution in the development of the models, their
differences, their similarities and future challenges. Eng Technol Appl Sci Res
2014;4:636–43.
[172] Kao KC. Charge carrier injection from electrical contacts. In: Dielectric phenomena in
solids. 1st ed. Academic Press: San Diego; 2004. p. 327–80.
[173] Kirkpatrick S. Percolation and conduction. Rev Mod Phys 1973;45:574–88.