Page 200 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 200
172 Polymer-based Nanocomposites for Energy and Environmental Applications
[56] Jung HM, Kang JH, Yang SY, Won JC, Kim YS. Barium titanate nanoparticles with
Diblock copolymer shielding layers for high-energy density nanocomposites. Chem
Mater 2010;22:450–6.
[57] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry
for multifunctional coatings. Science 2007;318:426–30.
[58] Song Y, Shen Y, Liu H,Lin Y, Li M, Nan CW. Enhanced dielectric and ferroelectric prop-
erties induced by dopamine-modified BaTiO 3 nanofibers in flexible poly(vinylidene
fluoride-trifluoroethylene) nanocomposites. J Mater Chem 2012;22:8063–8.
[59] Dang ZM, Wang HY, Xu HP. Influence of silane coupling agent on morphology and
dielectric property in BaTiO 3 /polyvinylidene fluoride composites. Appl Phys Lett
2006;89:112902–4.
[60] Ding HL, Zhang YX, Wang S, JM X, SC X, Li GH. Fe 3 O 4 @SiO 2 core/shell
nanoparticles: the silica coating regulations with a single core for different core sizes
and shell thicknesses. Chem Mater 2012;24:4572–80.
[61] Yang K, Huang XY, Zhu M, Xie LY, Tanaka T, Jiang PK. Combining RAFT polymer-
ization and thiol Ene click reaction for core shell structured polymer@BaTiO 3
nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage
capability. ACS Appl Mater Interfaces 2014;6:1812–22.
[62] Guo N, DiBenedetto SA, Kwon DK, Wang L, Russell M, Lanagan M, et al. Supported
metallocene catalysis for in situ synthesis of high energy density metal oxide
nanocomposites. J Am Chem Soc 2007;129:766–7.
[63] Xie LY, Huang XY, Yang K, Li S, Jiang PK. “Grafting to” route to PVDF-HFP-GMA/
BaTiO 3 nanocomposites with high dielectric constant and high thermal conductivity for
energy storage and thermal management applications. J Mater Chem A 2014;2:5244–51.
[64] Huang XY, Iizuka T, Jiang PK, Ohki Y, Tanaka T. Role of interface on the thermal con-
ductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C
2012;116:13629–39.
[65] Yang K, Huang XY, Xie LY, Wu C, Jiang PK, Tanaka T. Core–shell structured polysty-
rene/BaTiO 3 hybrid Nanodielectrics prepared by in situ RAFT polymerization: a route to
high dielectric constant and low loss materials with weak frequency dependence.
Macromol Rapid Commun 2012;33:1921–6.
[66] Luo H, Zhang D, Jiang C, Yuan X, Chen X, Zhou K. Improved dielectric properties and
energy storage density of P(VDFHFP) nanocomposite with Hydantoin epoxy resin
coated BaTiO 3 . ACS Appl Mater Interfaces 2015;7:8061–9.
[67] Avila HA, Ramajo LA, Goes MS, Reboredo MM, Castro MS, Parra R. Dielectric behav-
ior of epoxy/BaTiO 3 composites using nanostructured ceramic fibers obtained by
electrospinning. ACS Appl Mater Interfaces 2013;5:505–10.
[68] Wang Q, Zhu L. Polymer nanocomposites for electrical energy storage. J Polym Sci
B Polym Phys 2011;49:1421–9.
[69] Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH. Fundamentals, processes and appli-
cations of high-permittivity polymer–matrixcomposites.Prog MaterSci 2012;57:660–723.
[70] Wen F, Xu Z, Xia WM, Wei XY, Zhang ZC. High energy density nanocomposites based
on poly(vinylidene fluoride-chlorotrifluoroethylene) and barium titanate. Polym Eng Sci
2013;53:897 904.
[71] Beier CW, Sanders JM, Brutchey RL. Improved breakdown strength and energy density
in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal
fillers. J Phys Chem C 2013;117:6958–65.
[72] Tomer V, Polizos G, Manias E, Randall CA. Epoxy-based nanocomposites for electrical
energy storage. I: Effects of montmorillonite and barium titanate nanofillers. J Appl Phys
2010;108:074116.