Page 208 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 208

180                Polymer-based Nanocomposites for Energy and Environmental Applications

         [215] Halperin WP. Quantum size effects in metal particles. Rev Mod Phys 1986;58:533–606.
         [216] Yu K, Niu Y, Bai Y, Zhou Y, Wang H. Poly(vinylidene fluoride) polymer based
              nanocomposites with significantly reduced energy loss by filling with core-shell struc-
              tured BaTiO 3 /SiO 2 nanoparticles. Appl Phys Lett 2013;102:102903.
         [217] Yu K, Bai Y, Zhou Y, Niu Y, Wang H. Poly(vinylidene fluoride) polymer based
              nanocomposites with enhanced energy density by filling with polyacrylate elastomers
              and BaTiO 3 nanoparticles. Appl Phys Lett 2014;104:082904.
         [218] Hu P, Wang J, Shen Y, Guan Y, Lin Y, Nan C-W. Highly enhanced energy density
              induced by hetero-interface in sandwich-structured polymer nanocomposites. J Mater
              Chem A 2013;1:12321–6.
         [219] Wang F, Zhou D, Gong S. Dielectric behaviour of TiC–PVDF nanocomposites. Phys Stat
              Sol RRL 2009;3:22–4.
         [220] Liu J, Smith RW, Mei W-N. Synthesis of the giant dielectric constant material
              CaCu 3 Ti 4 O 12 by wet-chemistry methods. Chem Mater 2007;19(6024):6020.
         [221] Thomas P, Varughese KT, Dwarakanath K, Varma KBR. Dielectric properties of
              poly(vinylidene  fluoride)/CaCu 3 Ti 4 O 12  composites.  Compos  Sci  Technol
              2010;70:539–45.
         [222] Yuan J-K, Dang Z-M, Yao S-H, Zha J-W, Zhou T, Li S-T, et al. Fabrication and dielectric
              properties of advanced high permittivity polyaniline/poly(vinylidene fluoride)
              nanohybrid films with high energy storage density. J Mater Chem 2010;20:2441–7.
         [223] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev
              2006;106:1105–36.
         [224] Sathyanarayana S, H€ ubner C. Thermoplastic nanocomposites with carbon nanotubes.
              In: 1st e, Njuguna J, editors. Structural nanocomposites. Berlin/Heidelberg: Springer;
              2013. p. 19–60.
         [225] Xie X-L, Mai Y-W, Zhou X-P. Dispersion and alignment of carbon nanotubes in polymer
              matrix: a review. Mater. Sci. Eng. R2005; 49: 89–112.
         [226] Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon
              nanotubes  for  polymer-based  nanocomposites:  a  review.  Compos  Part  A
              2010;41:1345–67.
         [227] Baji A, Mai Y-W, Abtahi M, Wong S-C, Liu Y, Li Q. Microstructure development in
              electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence
              on tensile strength and dielectric permittivity. Compos Sci Technol 2013;88:1–8.
         [228] Zhang Y, Wang Y, Deng Y, Guo Y, Bi W, Li M, et al. Excellent dielectric properties of
              anisotropic polymer composites filled with parallel aligned zinc flakes. Appl Phys Lett
              2012;101:192904.
         [229] Deng Y, Zhang Y, Wang Y, Li M, Yuan J, Bai J. A facile way to fabricate novel 2–3-type
              composites based on zinc powders and polyvinylidene fluoride with enhanced dielectric
              properties. Compos Part A 2012;43:842–6.
         [230] Fan P, Wang L, Yang J, Chen F, Zhong M. Graphene/poly(vinylidene fluoride) compos-
              ites with high dielectric constant and low percolation threshold. Nanotechnology
              2012;23:365702.
         [231] da Silva AB, Arjmand M, Sundararaj U, Bretas RES. Novel composites of copper nano-
              wire/PVDF with superior dielectric properties. Polymer 2014;55:226–34.
         [232] Rahman MA, Lee B-C, Phan D-T, Chung G-S. Fabrication and characterization of highly
              efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater
              Struct 2013;22:085017.
         [233] Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past,
              present and future. Prog Mater Sci 2011;56: 1178-1171.
   203   204   205   206   207   208   209   210   211   212   213