Page 208 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 208
180 Polymer-based Nanocomposites for Energy and Environmental Applications
[215] Halperin WP. Quantum size effects in metal particles. Rev Mod Phys 1986;58:533–606.
[216] Yu K, Niu Y, Bai Y, Zhou Y, Wang H. Poly(vinylidene fluoride) polymer based
nanocomposites with significantly reduced energy loss by filling with core-shell struc-
tured BaTiO 3 /SiO 2 nanoparticles. Appl Phys Lett 2013;102:102903.
[217] Yu K, Bai Y, Zhou Y, Niu Y, Wang H. Poly(vinylidene fluoride) polymer based
nanocomposites with enhanced energy density by filling with polyacrylate elastomers
and BaTiO 3 nanoparticles. Appl Phys Lett 2014;104:082904.
[218] Hu P, Wang J, Shen Y, Guan Y, Lin Y, Nan C-W. Highly enhanced energy density
induced by hetero-interface in sandwich-structured polymer nanocomposites. J Mater
Chem A 2013;1:12321–6.
[219] Wang F, Zhou D, Gong S. Dielectric behaviour of TiC–PVDF nanocomposites. Phys Stat
Sol RRL 2009;3:22–4.
[220] Liu J, Smith RW, Mei W-N. Synthesis of the giant dielectric constant material
CaCu 3 Ti 4 O 12 by wet-chemistry methods. Chem Mater 2007;19(6024):6020.
[221] Thomas P, Varughese KT, Dwarakanath K, Varma KBR. Dielectric properties of
poly(vinylidene fluoride)/CaCu 3 Ti 4 O 12 composites. Compos Sci Technol
2010;70:539–45.
[222] Yuan J-K, Dang Z-M, Yao S-H, Zha J-W, Zhou T, Li S-T, et al. Fabrication and dielectric
properties of advanced high permittivity polyaniline/poly(vinylidene fluoride)
nanohybrid films with high energy storage density. J Mater Chem 2010;20:2441–7.
[223] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev
2006;106:1105–36.
[224] Sathyanarayana S, H€ ubner C. Thermoplastic nanocomposites with carbon nanotubes.
In: 1st e, Njuguna J, editors. Structural nanocomposites. Berlin/Heidelberg: Springer;
2013. p. 19–60.
[225] Xie X-L, Mai Y-W, Zhou X-P. Dispersion and alignment of carbon nanotubes in polymer
matrix: a review. Mater. Sci. Eng. R2005; 49: 89–112.
[226] Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon
nanotubes for polymer-based nanocomposites: a review. Compos Part A
2010;41:1345–67.
[227] Baji A, Mai Y-W, Abtahi M, Wong S-C, Liu Y, Li Q. Microstructure development in
electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence
on tensile strength and dielectric permittivity. Compos Sci Technol 2013;88:1–8.
[228] Zhang Y, Wang Y, Deng Y, Guo Y, Bi W, Li M, et al. Excellent dielectric properties of
anisotropic polymer composites filled with parallel aligned zinc flakes. Appl Phys Lett
2012;101:192904.
[229] Deng Y, Zhang Y, Wang Y, Li M, Yuan J, Bai J. A facile way to fabricate novel 2–3-type
composites based on zinc powders and polyvinylidene fluoride with enhanced dielectric
properties. Compos Part A 2012;43:842–6.
[230] Fan P, Wang L, Yang J, Chen F, Zhong M. Graphene/poly(vinylidene fluoride) compos-
ites with high dielectric constant and low percolation threshold. Nanotechnology
2012;23:365702.
[231] da Silva AB, Arjmand M, Sundararaj U, Bretas RES. Novel composites of copper nano-
wire/PVDF with superior dielectric properties. Polymer 2014;55:226–34.
[232] Rahman MA, Lee B-C, Phan D-T, Chung G-S. Fabrication and characterization of highly
efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater
Struct 2013;22:085017.
[233] Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past,
present and future. Prog Mater Sci 2011;56: 1178-1171.