Page 211 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 211

Polymer-based nanocomposites                                      183

           [274] Guo HZ, Mudryk Y, Ahmad MI, Pang XC, Zhao L, Akinc M, et al. Structure evolution
                and dielectric behavior of polystyrene-capped barium titanate nanoparticles. J Mater
                Chem 2012;22:23944–51.
           [275] Huang X, Jiang P. Core–shell structured high-k polymer nanocomposites for energy stor-
                age and dielectric applications. Adv Mater 2015;27:546–54.
           [276] Xie LY, Huang XY, Wu C, Jiang PK. Core-shell structured poly(methyl methacrylate)/
                BaTiO 3 nanocomposites prepared by in situ atom transfer radical polymerization: a route
                to high dielectric constant materials with the inherent low loss of the base polymer.
                J Mater Chem 2011;21:5897–906.
           [277] Yang K, Huang XY, Huang YH, Xie LY, Jiang PK. Fluoro-polymer@BaTiO 3 hybrid
                nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer
                nanocomposites with high dielectric constant and low dielectric loss for energy storage
                application. Chem Mater 2013;25:2327–35.
           [278] Fredin LA, Li Z, Lanagan MT, Ratner MA, Marks TJ. Sustainable high capacitance at
                high frequencies: metallic aluminum polypropylene nanocomposites. ACS Nano
                2013;7:396–407.
           [279] Maliakal A, Katz H, Cotts P, Subramoney S, Mirau P. Inorganic oxide core, polymer
                shell nanocomposite as a high K gate dielectric for flexible electronics applications.
                J Am Chem Soc 2005;127:14655–62.
           [280] Azzaroni O. Polymer brushes here, there, and everywhere: recent advances in their prac-
                tical applications and emerging opportunities in multiple research fields. J Polym Sci A:
                Polym Chem 2012;50:3225–58.
           [281] Li Q, Chen L, Gadinski MR, Zhang S, Zhang G, Li H, et al. Flexible high-temperature
                dielectric materials from polymer nanocomposites. Nature 2015;523:576–9.
           [282] (a)Kadoshima M, Hiratani M, Shimamoto Y, Torii K, Miki H, Kimura S, et al. Rutile-
                type TiO 2 thin film for high-k gate insulator. Thin Solid Films 2003;424:224–8;
                (b)Ansari MO, Khan MM, Ansari SA, Cho MH. Electrically conductive polyaniline
                sensitized defective-TiO 2 for improved visible light photocatalytic and photo-
                electrochemical performance: a synergistic effect. New J Chem 2015;39:8381–8.
           [283] (a)Kim SK, Kim WD, Kim KM, Hwang CS, Jeong J. High dielectric constant TiO 2 thin
                films on a Ru electrode grown at 250°C by atomic layer deposition. Appl Phys Lett
                2004;85:4112–4; (b)Ansari MO, Khan MM, Ansari SA, Raju K, Lee J, Cho MH.
                Enhanced thermal stability under DC electrical conductivity retention and visible light
                activity of Ag/TiO 2 @polyaniline nanocomposite film. ACS Appl Mater Interfaces
                2014;6:8124–33; (c)Ansari MO, Khan MM, Ansari SA, Lee J, Cho MH. Enhanced ther-
                moelectric behaviour and visible light activity of Ag@TiO 2 /polyaniline nanocomposite
                synthesized by biogenic-chemical route. RSC Adv 2014;4:23713–9.
           [284] (a)Shevchenko  VG,  Polschikov  SV,  Nedorezova  PM,  Klyamkina  AN,
                Shchegolikhin AN, Aladyshev AM, et al. In situ polymerized poly(propylene)/graphene
                nanoplatelets nanocomposites: dielectric and microwave properties. Polymer
                2012;53:5330–5; (b)Ansari MO, Khan MM, Ansari SA, Amal I, Lee J, Cho MH.
                Enhanced thermoelectric performance and ammonia sensing properties of sulfonated
                polyaniline/graphene thin films. Mater Lett 2014;114:159–62.
   206   207   208   209   210   211   212   213   214   215   216