Page 207 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 207

Polymer-based nanocomposites                                      179

           [196] Yuan J-K, Yao S-H, Dang Z-M, Sylvestre A, Genestoux M, Bai J. Giant dielectric per-
                mittivity nanocomposites: realizing true potential of pristine carbon nanotubes in poly-
                vinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C
                2011;115:5515–21.
           [197] Quan H, Chen D, Xie X, Fan H. Polyvinylidene fluoride/vanadium pentoxide composites
                with high dielectric constant and low dielectric loss. Phys Stat Sol A 2013;210:2706–9.
           [198] He L, Tjong S. Low percolation threshold of graphene/polymer composites prepared by
                solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res Lett
                2013;8:132.
           [199] Su K, Nuraje N, Yang N-L. Open-bench method for the preparation of BaTiO 3 , SrTiO 3 ,
                and Ba x Sr 1–x TiO 3 nanocrystals at 80°C. Langmuir 2007;23:11369–72.
           [200] Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K. Electrical conduc-
                tivity of carbon-polymer composites as a function of carbon content. J Mater Sci
                1982;17:1610–6.
           [201] Sau KP, Chaki TK, Khastgir D. Conductive rubber composites from different blends of
                ethylene–propylene–diene rubber and nitrile rubber. J Mater Sci 1997;32:5717–24.
           [202] Narkis M, Vaxman A. Resistivity behavior of filled electrically conductive crosslinked
                polyethylene. J Appl Polym Sci 1984;29:1639–52.
           [203] Yu K, Niu Y, Zhou Y, Bai Y, Wang H. Nanocomposites of surface-modified BaTiO 3
                nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram
                Soc 2013;96:2519–24.
           [204] Ameduri B. From vinylidene fluoride (VDF) to the applications of VDF-containing poly-
                mers and copolymers: recent developments and future trends. Chem Rev
                2009;109:6632–86.
           [205] Lovinger AJ, Davis DD, Cais RE, Kometani JM. On the curie temperature of
                poly(vinylidenefluoride). Macromolecules 1986;19:1491–4.
           [206] Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluo-
                ride): determination, processing and applications. Process Appl Prog Polym Sci
                2014;39:683–706.
           [207] Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss
                dielectrics. Macromolecules 2012;45:2937–54.
           [208] Tashiro K. Nalwa HS, editor. Ferroelectric polymers: chemistry, physics, and applica-
                tions. New York: Marcel Dekker, Inc.; 1995. p. 63–181.
           [209] Martins P, Serrado Nunes J, Hungerford G, Miranda D, Ferreira A, Sencadas V, et al.
                Local variation of the dielectric properties of poly(vinylidene fluoride) during the α-
                to β-phase transformation. Phys Lett A 2009;373:177–80.
           [210] Guan F, Wang J, Pan J, Wang Q, Zhu L. Effects of polymorphism and crystallite size on
                dipole reorientation in poly(vinylidene fluoride) and its random copolymers.
                Macromolecules 2010;43:6739–48.
           [211] Thakur VK, Lin M-F, Tan EJ, Lee PS. Green aqueous modification of fluoropolymers for
                energy storage applications. J Mater Chem 2012;22:5951–9.
           [212] Xu H, Gao L. Tetragonal nanocrystalline barium titanate powder: preparation, character-
                ization, and dielectric properties. J Am Ceram Soc 2003;86:203–5.
           [213] Lin M-F, Thakur VK, Tan EJ, Lee PS. Dopant induced hollow BaTiO 3 nanostructures for
                application in high performance capacitors. J Mater Chem 2011;21:16500–4.
           [214] Yu K, Niu Y, Xiang F, Zhou Y, Bai Y, Wang H. Enhanced electric breakdown strength
                and high energy density of barium titanate filled polymer nanocomposites. J Appl Phys
                2013;114:174107.
   202   203   204   205   206   207   208   209   210   211   212