Page 207 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 207
Polymer-based nanocomposites 179
[196] Yuan J-K, Yao S-H, Dang Z-M, Sylvestre A, Genestoux M, Bai J. Giant dielectric per-
mittivity nanocomposites: realizing true potential of pristine carbon nanotubes in poly-
vinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C
2011;115:5515–21.
[197] Quan H, Chen D, Xie X, Fan H. Polyvinylidene fluoride/vanadium pentoxide composites
with high dielectric constant and low dielectric loss. Phys Stat Sol A 2013;210:2706–9.
[198] He L, Tjong S. Low percolation threshold of graphene/polymer composites prepared by
solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res Lett
2013;8:132.
[199] Su K, Nuraje N, Yang N-L. Open-bench method for the preparation of BaTiO 3 , SrTiO 3 ,
and Ba x Sr 1–x TiO 3 nanocrystals at 80°C. Langmuir 2007;23:11369–72.
[200] Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K. Electrical conduc-
tivity of carbon-polymer composites as a function of carbon content. J Mater Sci
1982;17:1610–6.
[201] Sau KP, Chaki TK, Khastgir D. Conductive rubber composites from different blends of
ethylene–propylene–diene rubber and nitrile rubber. J Mater Sci 1997;32:5717–24.
[202] Narkis M, Vaxman A. Resistivity behavior of filled electrically conductive crosslinked
polyethylene. J Appl Polym Sci 1984;29:1639–52.
[203] Yu K, Niu Y, Zhou Y, Bai Y, Wang H. Nanocomposites of surface-modified BaTiO 3
nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram
Soc 2013;96:2519–24.
[204] Ameduri B. From vinylidene fluoride (VDF) to the applications of VDF-containing poly-
mers and copolymers: recent developments and future trends. Chem Rev
2009;109:6632–86.
[205] Lovinger AJ, Davis DD, Cais RE, Kometani JM. On the curie temperature of
poly(vinylidenefluoride). Macromolecules 1986;19:1491–4.
[206] Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluo-
ride): determination, processing and applications. Process Appl Prog Polym Sci
2014;39:683–706.
[207] Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss
dielectrics. Macromolecules 2012;45:2937–54.
[208] Tashiro K. Nalwa HS, editor. Ferroelectric polymers: chemistry, physics, and applica-
tions. New York: Marcel Dekker, Inc.; 1995. p. 63–181.
[209] Martins P, Serrado Nunes J, Hungerford G, Miranda D, Ferreira A, Sencadas V, et al.
Local variation of the dielectric properties of poly(vinylidene fluoride) during the α-
to β-phase transformation. Phys Lett A 2009;373:177–80.
[210] Guan F, Wang J, Pan J, Wang Q, Zhu L. Effects of polymorphism and crystallite size on
dipole reorientation in poly(vinylidene fluoride) and its random copolymers.
Macromolecules 2010;43:6739–48.
[211] Thakur VK, Lin M-F, Tan EJ, Lee PS. Green aqueous modification of fluoropolymers for
energy storage applications. J Mater Chem 2012;22:5951–9.
[212] Xu H, Gao L. Tetragonal nanocrystalline barium titanate powder: preparation, character-
ization, and dielectric properties. J Am Ceram Soc 2003;86:203–5.
[213] Lin M-F, Thakur VK, Tan EJ, Lee PS. Dopant induced hollow BaTiO 3 nanostructures for
application in high performance capacitors. J Mater Chem 2011;21:16500–4.
[214] Yu K, Niu Y, Xiang F, Zhou Y, Bai Y, Wang H. Enhanced electric breakdown strength
and high energy density of barium titanate filled polymer nanocomposites. J Appl Phys
2013;114:174107.