Page 264 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 264

236                Polymer-based Nanocomposites for Energy and Environmental Applications

         References


          [1] Srinivasan SS, Sharma PC. Development of novel polymer nanostructures and nanoscale
             complex hydrides for reversible hydrogen storage. In: Liu J, editor. Hydrogen storage.
             InTech, Croatia; 2012. p. 1–28.
          [2] Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehi-
             cles. Int J Hydrog Energy 2009;34:4569–74.
          [3] Conte M, Lacobazzi A, Ronchetti M, Vellone R. Hydrogen economy for a sustainable
             development: state-of-the-art and technological perspectives. J Power Sources
             2001;100:171–87.
          [4] Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK.
             Nanomaterials for hydrogen storage applications: a review. J Nanomater 2008;2008:1–9.
          [5] Zuttel A. Materials for hydrogen storage. Mater Today 2003;6:24–33.
          [6] Budd PM, Butler A, Selbie J, Mahmood K, McKeown NB, Ghanem B, et al. The potential
             of organic polymer-based hydrogen storage materials. Phys Chem Chem Phys
             2007;9:1802–8.
          [7] Foreman JP, Monkman AP. Theoretical investigations into the structural and electronic
             influences on the hydrogen bonding in doped PANI. Synth Met 2003;135–136:375–6.
          [8] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen
             storage: a review. Int J Hydrog Energy 2007;32:1121–40.
          [9] Zaluska A, Zaluski L, Str€ om-Olsen JO. Structure, catalysis and atomic reactions on the
             nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys
             A Mater Sci Process 2001;72:157–65.
         [10] Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, et al. Hydrogen
             adsorption in several types of carbon nanotubes. J Nanosci Nanotechnol 2009;9:6806–12.
         [11] Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in
             single-walled carbon nanotubes at room temperature. Science 1999;286:1127–9.
         [12] Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, et al. Hydrogen storage
             in  microporous  hypercrosslinked  organic  polymer  networks.  Chem  Mater
             2007;19:2034–48.
         [13] Germain J, Frechet JM, Svec F. Nanoporous polymers for hydrogen storage. Small
             2009;5:1098–111.
         [14] Weidenthaler C, Felderhoff M. Solid-state hydrogen storage for mobile applications: Quo
             Vadis? Energy Environ Sci 2011;4:2495–502.
         [15] Germain J, Fr  echet JM, Svec F. Hypercrosslinked PANIs with nanoporous structure and
             high surface area: potential adsorbents for hydrogen storage. J Mater Chem
             2007;17:4989–97.
         [16] Genie `s EM, Boyle A, Lapkowski M, Tsintavis C. PANI: a historical survey. Synth Met
             1990;36:139–82.
         [17] Attia NF, Geckeler KE. PANI as a material for hydrogen storage applications. Macromol
             Rapid Commun 2013;34:1043–55.
         [18] Li Y, Fu ZY, Su BY. Hierarchically structured porous materials for energy conversion and
             storage. Adv Funct Mater 2012;22:4634–67.
         [19] Reardon R, Hanlon JM, Hughes RW, G-Jopek J, Mandal TK, Gregory DH. Emerging con-
             cepts in solid-state hydrogen storage: the role of nanomaterials design. Energy Environ Sci
             2012;5:5951–79.
         [20] Ulrich M, Kumar A, Srinivasan S, Stefanakos E. PANI-based nanocomposite materials for
             hydrogen storage. Int J Hydrog Energy 2007;32:1010–5.
   259   260   261   262   263   264   265   266   267   268   269