Page 265 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 265

Polyaniline-based nanocomposites for hydrogen storage             237

           [21] Sevilla M, Mokaya R. Energy storage applications of activated carbons: supercapacitors
               and hydrogen storage. Energy Environ Sci 2014;7:1250–80.
           [22] Kim BH, Hong WG, Lee SM, Yun YJ, HY Y, SY O, et al. Enhancement of hydrogen stor-
               age capacity in PANI vanadium pentoxide nanocomposites. Int J Hydrog Energy
               2010;35:1300–4.
           [23] Cho SJ, Song KS, Kim JW, Kim TH, Choo K. Hydrogen sorption in HCl-treated PANI and
               polypyrrole: new potential hydrogen storage media. ACS Div Fuel Chem Prepr
               2002;47:790–1.
           [24] Panella B, Kossykh L, Dettlaff-Weglikowska U, Hirscher M, Zerbi G, Roth S. Volumetric
               measurement of hydrogen storage in HCl-treated PANI and polypyrrole. Synth Met
               2005;151:208–10.
           [25] Cho SJ, Choo K, Kim DP, Kim JW. H 2 sorption in HCl-treated PANI and polypyrrole.
               Catal Today 2007;120:336–40.
           [26] Nijkamp MG, Raaymakers JEMJ, Van Dillen AJ, De Jong KP. Hydrogen storage using
               physisorption—materials demands. Appl Phys A 2001;72:619–23.
           [27] Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK. Room
               temperature reversible hydrogen storage in polyaniline (PANI) nanofibers. J Nanosci
               Nanotechnol 2009;9:4561–5.
           [28] Rahy A, Rguig T, Cho SJ, Bunker CE, Yang DJ. Polar solvent soluble and hydrogen
               absorbing PANI nanofibers. Synth Met 2011;161:280–4.
           [29] Srinivasan SS, Ratnadurai R, Niemann MU, Phani AR, Goswami DY, Stefanakos EK.
               Reversible hydrogen storage in electrospun PANI fibers. Int J Hydrog Energy
               2010;35:225–30.
           [30] Attia NF, Geckeler KE. PANI-polypyrrole composites with enhanced hydrogen storage
               capacities. Macromol Rapid Commun 2013;34:931–7.
           [31] Yuan S, Kirklin S, Dorney B, Liu D, Yu L. Nanoporous polymers containing ster-
               eocontorted cores for hydrogen storage. Macromolecules 2009;42:1554–9.
           [32] McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, et al.
               Towards polymer-based hydrogen storage materials: engineering ultramicroporous
               cavities within polymers of intrinsic microporosity. Angew Chem Int Ed
               2006;45:1804–7.
           [33] McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials
               for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev
               2006;35:675–83.
           [34] Ebrahim R, Zomorrodian A, Attia NF, Geckeler KE, Ignatiev A. Cyclical hydrogen stor-
               age and retention in PANI. Energy Sci Eng 2016;4:277–82.
           [35] Lee D, Char K, Lee SW, Park YW. Structural changes of PANI/montmorillonite
               nanocomposites and their effects on physical properties. J Mater Chem 2003;13:2942–7.
           [36] Germain J, Hradil J, Frechet JMJ, Svec F. High surface area nanoporous polymers for
               reversible hydrogen storage. Chem Mater 2006;18:4430–5.
           [37] Germain J, Svec F, Frechet JMJ. Preparation of size-selective nanoporous polymer net-
               works of aromatic rings: potential adsorbents for hydrogen storage. Chem Mater
               2008;20:7069–76.
           [38] Buda C, Dunietz BD. Hydrogen physisorption on the organic linker in metal organic
               frameworks: ab initio computational study. J Phys Chem B 2006;110:10479–84.
           [39] Rowsell JLC, Eckert J, Yaghi OM. Characterization of H 2 binding sites in prototypical
               metal-organic frameworks by inelastic neutron scattering. J Am Chem Soc
               2005;127:14904–10.
   260   261   262   263   264   265   266   267   268   269   270