Page 265 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 265
Polyaniline-based nanocomposites for hydrogen storage 237
[21] Sevilla M, Mokaya R. Energy storage applications of activated carbons: supercapacitors
and hydrogen storage. Energy Environ Sci 2014;7:1250–80.
[22] Kim BH, Hong WG, Lee SM, Yun YJ, HY Y, SY O, et al. Enhancement of hydrogen stor-
age capacity in PANI vanadium pentoxide nanocomposites. Int J Hydrog Energy
2010;35:1300–4.
[23] Cho SJ, Song KS, Kim JW, Kim TH, Choo K. Hydrogen sorption in HCl-treated PANI and
polypyrrole: new potential hydrogen storage media. ACS Div Fuel Chem Prepr
2002;47:790–1.
[24] Panella B, Kossykh L, Dettlaff-Weglikowska U, Hirscher M, Zerbi G, Roth S. Volumetric
measurement of hydrogen storage in HCl-treated PANI and polypyrrole. Synth Met
2005;151:208–10.
[25] Cho SJ, Choo K, Kim DP, Kim JW. H 2 sorption in HCl-treated PANI and polypyrrole.
Catal Today 2007;120:336–40.
[26] Nijkamp MG, Raaymakers JEMJ, Van Dillen AJ, De Jong KP. Hydrogen storage using
physisorption—materials demands. Appl Phys A 2001;72:619–23.
[27] Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK. Room
temperature reversible hydrogen storage in polyaniline (PANI) nanofibers. J Nanosci
Nanotechnol 2009;9:4561–5.
[28] Rahy A, Rguig T, Cho SJ, Bunker CE, Yang DJ. Polar solvent soluble and hydrogen
absorbing PANI nanofibers. Synth Met 2011;161:280–4.
[29] Srinivasan SS, Ratnadurai R, Niemann MU, Phani AR, Goswami DY, Stefanakos EK.
Reversible hydrogen storage in electrospun PANI fibers. Int J Hydrog Energy
2010;35:225–30.
[30] Attia NF, Geckeler KE. PANI-polypyrrole composites with enhanced hydrogen storage
capacities. Macromol Rapid Commun 2013;34:931–7.
[31] Yuan S, Kirklin S, Dorney B, Liu D, Yu L. Nanoporous polymers containing ster-
eocontorted cores for hydrogen storage. Macromolecules 2009;42:1554–9.
[32] McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, et al.
Towards polymer-based hydrogen storage materials: engineering ultramicroporous
cavities within polymers of intrinsic microporosity. Angew Chem Int Ed
2006;45:1804–7.
[33] McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials
for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev
2006;35:675–83.
[34] Ebrahim R, Zomorrodian A, Attia NF, Geckeler KE, Ignatiev A. Cyclical hydrogen stor-
age and retention in PANI. Energy Sci Eng 2016;4:277–82.
[35] Lee D, Char K, Lee SW, Park YW. Structural changes of PANI/montmorillonite
nanocomposites and their effects on physical properties. J Mater Chem 2003;13:2942–7.
[36] Germain J, Hradil J, Frechet JMJ, Svec F. High surface area nanoporous polymers for
reversible hydrogen storage. Chem Mater 2006;18:4430–5.
[37] Germain J, Svec F, Frechet JMJ. Preparation of size-selective nanoporous polymer net-
works of aromatic rings: potential adsorbents for hydrogen storage. Chem Mater
2008;20:7069–76.
[38] Buda C, Dunietz BD. Hydrogen physisorption on the organic linker in metal organic
frameworks: ab initio computational study. J Phys Chem B 2006;110:10479–84.
[39] Rowsell JLC, Eckert J, Yaghi OM. Characterization of H 2 binding sites in prototypical
metal-organic frameworks by inelastic neutron scattering. J Am Chem Soc
2005;127:14904–10.