Page 309 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 309

278                Polymer-based Nanocomposites for Energy and Environmental Applications

         [163] He Z-Q, Xiong L-Z, Chen S, Wu X-M, Liu W-P, Huang K-L. In situ polymerization prep-
              aration and characterization of Li 4 Ti 5 O 12 -polyaniline anode material. Trans Nonferrous
              Metals Soc China 2010;20:s262–6.
         [164] Wang X, Shen L, Li H, Wang J, Dou H, Zhang X. PEDOT coated Li 4 Ti 5 O 12 nanorods:
              soft chemistry approach synthesis and their lithium storage properties. Electrochim Acta
              2014;129:283–9.
         [165] Xu D, Wang P, Yang R. Conducting polythiophene-wrapped Li 4 Ti 5 O 12 spinel anode
              material for ultralong cycle-life Li-ion batteries. Ceram Int 2017;43(5):4712–5.
         [166] Kim C, Noh M, Choi M, Cho J, Park B. Critical size of a nano SnO 2 electrode for
              Li-secondary battery. Chem Mater 2005;17(12):3297–301.
         [167] Wang C, Zhou Y, Ge M, Xu X, Zhang Z, Jiang JZ. Large-scale synthesis of SnO 2
              nanosheets with high lithium storage capacity. J Am Chem Soc 2010;132(1):46–7.
         [168] Wu HB, Chen JS, Lou XW, Hng HH. Synthesis of SnO 2 hierarchical structures assem-
              bled from nanosheets and their lithium storage properties. J Phys Chem C 2011;115
              (50):24605–10.
         [169] Liu H, Liu BH, Li ZP. A reduced graphene oxide/SnO 2 /polyaniline nanocomposite for
              the anode material of Li-ion batteries. Solid State Ionics 2016;294:6–14.
         [170] Zheng H, Ncube NM, Raju K, Mphahlele N, Mathe M. The effect of polyaniline on TiO 2
              nanoparticles as anode materials for lithium ion batteries. SpringerPlus 2016;5(1):630.
         [171] Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nano-
              Micro Lett 2014;6(4):347–58.
         [172] Kummer M, Badillo JP, Schmitz A, Bremes H-G, Winter M, Schulz C, et al. Silicon/
              polyaniline nanocomposites as anode material for lithium ion batteries. J Electrochem
              Soc 2014;161(1):A40–5.
         [173] Sher Shah MSA, Muhammad S, Park JH, Yoon W-S, Yoo PJ. Incorporation of PEDOT:
              PSS into SnO 2 /reduced graphene oxide nanocomposite anodes for lithium-ion batteries
              to achieve ultra-high capacity and cyclic stability. RSC Adv 2015;5(18):13964–71.
         [174] Chen GZ. Supercapacitor and supercapattery as emerging electrochemical energy stores.
              Int Mater Rev 2017;62(4):173–202.
         [175] Donne SW. General principles of electrochemistry. Supercapacitors. California, USA:
              Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 1–68.
         [176] Conway BE. Introduction and historical perspective. In: Conway BE, editor. Electro-
              chemical supercapacitors: scientific fundamentals and technological applications.
              Boston, MA: Springer; 1999. p. 1–9.
         [177] Gonza ´lez A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: technologies
              and materials. Renew Sust Energ Rev 2016;58:1189–206.
         [178] Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochem-
              ical supercapacitors with high energy densities. Adv Energy Mater 2014;4(4):1300816.
         [179] Conway BE. Similarities and differences between supercapacitors and batteries for stor-
              ing electrical energy. In: Conway BE, editor. Electrochemical supercapacitors: scientific
              fundamentals and technological applications. Boston, MA: Springer; 1999. p. 11–31.
         [180] Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based sup-
              ercapacitor electrode materials. Nano Energy 2017;36:268–85.
         [181] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008;7
              (11):845–54.
         [182] Lu P, Xue D, Yang H, Liu Y. Supercapacitor and nanoscale research towards electro-
              chemical energy storage. Int J Smart Nano Mater 2013;4(1):2–26.
         [183] Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA. Effect of pore size and its
              dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci
              2012;5(4):6474–9.
   304   305   306   307   308   309   310   311   312   313   314