Page 309 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 309
278 Polymer-based Nanocomposites for Energy and Environmental Applications
[163] He Z-Q, Xiong L-Z, Chen S, Wu X-M, Liu W-P, Huang K-L. In situ polymerization prep-
aration and characterization of Li 4 Ti 5 O 12 -polyaniline anode material. Trans Nonferrous
Metals Soc China 2010;20:s262–6.
[164] Wang X, Shen L, Li H, Wang J, Dou H, Zhang X. PEDOT coated Li 4 Ti 5 O 12 nanorods:
soft chemistry approach synthesis and their lithium storage properties. Electrochim Acta
2014;129:283–9.
[165] Xu D, Wang P, Yang R. Conducting polythiophene-wrapped Li 4 Ti 5 O 12 spinel anode
material for ultralong cycle-life Li-ion batteries. Ceram Int 2017;43(5):4712–5.
[166] Kim C, Noh M, Choi M, Cho J, Park B. Critical size of a nano SnO 2 electrode for
Li-secondary battery. Chem Mater 2005;17(12):3297–301.
[167] Wang C, Zhou Y, Ge M, Xu X, Zhang Z, Jiang JZ. Large-scale synthesis of SnO 2
nanosheets with high lithium storage capacity. J Am Chem Soc 2010;132(1):46–7.
[168] Wu HB, Chen JS, Lou XW, Hng HH. Synthesis of SnO 2 hierarchical structures assem-
bled from nanosheets and their lithium storage properties. J Phys Chem C 2011;115
(50):24605–10.
[169] Liu H, Liu BH, Li ZP. A reduced graphene oxide/SnO 2 /polyaniline nanocomposite for
the anode material of Li-ion batteries. Solid State Ionics 2016;294:6–14.
[170] Zheng H, Ncube NM, Raju K, Mphahlele N, Mathe M. The effect of polyaniline on TiO 2
nanoparticles as anode materials for lithium ion batteries. SpringerPlus 2016;5(1):630.
[171] Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nano-
Micro Lett 2014;6(4):347–58.
[172] Kummer M, Badillo JP, Schmitz A, Bremes H-G, Winter M, Schulz C, et al. Silicon/
polyaniline nanocomposites as anode material for lithium ion batteries. J Electrochem
Soc 2014;161(1):A40–5.
[173] Sher Shah MSA, Muhammad S, Park JH, Yoon W-S, Yoo PJ. Incorporation of PEDOT:
PSS into SnO 2 /reduced graphene oxide nanocomposite anodes for lithium-ion batteries
to achieve ultra-high capacity and cyclic stability. RSC Adv 2015;5(18):13964–71.
[174] Chen GZ. Supercapacitor and supercapattery as emerging electrochemical energy stores.
Int Mater Rev 2017;62(4):173–202.
[175] Donne SW. General principles of electrochemistry. Supercapacitors. California, USA:
Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 1–68.
[176] Conway BE. Introduction and historical perspective. In: Conway BE, editor. Electro-
chemical supercapacitors: scientific fundamentals and technological applications.
Boston, MA: Springer; 1999. p. 1–9.
[177] Gonza ´lez A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: technologies
and materials. Renew Sust Energ Rev 2016;58:1189–206.
[178] Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochem-
ical supercapacitors with high energy densities. Adv Energy Mater 2014;4(4):1300816.
[179] Conway BE. Similarities and differences between supercapacitors and batteries for stor-
ing electrical energy. In: Conway BE, editor. Electrochemical supercapacitors: scientific
fundamentals and technological applications. Boston, MA: Springer; 1999. p. 11–31.
[180] Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based sup-
ercapacitor electrode materials. Nano Energy 2017;36:268–85.
[181] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008;7
(11):845–54.
[182] Lu P, Xue D, Yang H, Liu Y. Supercapacitor and nanoscale research towards electro-
chemical energy storage. Int J Smart Nano Mater 2013;4(1):2–26.
[183] Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA. Effect of pore size and its
dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci
2012;5(4):6474–9.