Page 305 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 305

274                Polymer-based Nanocomposites for Energy and Environmental Applications

          [88] Deng D. Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 2015;3
              (5):385–418.
          [89] Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials
              for Li-ion batteries. Energy Environ Sci 2011;4(9):3223–42.
          [90] Myung S-T, Amine K, Sun Y-K. Nanostructured cathode materials for rechargeable lith-
              ium batteries. J Power Sources 2015;283:219–36.
          [91] Yi T-F, Mei J, Zhu Y-R. Key strategies for enhancing the cycling stability and rate capac-
              ity of LiNi 0.5 Mn 1.5 O 4 as high-voltage cathode materials for high power lithium-ion
              batteries. J Power Sources 2016;316:85–105.
          [92] Takahashi Y, Tode S, Kinoshita A, Fujimoto H, Nakane I, Fujitani S. Development of
              lithium-ion batteries with a LiCoO 2 cathode toward high capacity by elevating charging
              potential. J Electrochem Soc 2008;155(7):A537–41.
          [93] Antolini E. LiCoO 2 : formation, structure, lithium and oxygen nonstoichiometry, elec-
              trochemical behaviour and transport properties. Solid State Ionics 2004;170
              (3–4):159–71.
          [94] Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. Li x CoO 2 (0<x< 1): a new
              cathode material for batteries of high energy density. Mater Res Bull 1980;15(6):783–9.
          [95] Delmas C, M  en  etrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, et al. An
              overview of the Li(Ni,M)O 2 systems: syntheses, structures and properties. Electrochim
              Acta 1999;45(1–2):243–53.
          [96] Yazami R, Ozawa Y, Gabrisch H, Fultz B. Mechanism of electrochemical performance
              decay in LiCoO 2 aged at high voltage. Electrochim Acta 2004;50(2–3):385–90.
          [97] Wilson JR, Cronin JS, Barnett SA, Harris SJ. Measurement of three-dimensional micro-
              structure in a LiCoO 2 positive electrode. J Power Sources 2011;196(7):3443–7.
          [98] Barpanda P, Nishimura S-I, Yamada A. High-voltage pyrophosphate cathodes. Adv
              Energy Mater 2012;2(7):841–59.
          [99] Wang Z, Wu C, Liu L, Wu F, Chen L, Huang X. Electrochemical evaluation and struc-
              tural characterization of commercial LiCoO 2 surfaces modified with MgO for lithium-
              ion batteries. J Electrochem Soc 2002;149(4):A466–71.
         [100] Chung S-Y, Bloking JT, Chiang Y-M. Electronically conductive phospho-olivines as
              lithium storage electrodes. Nat Mater 2002;1(2):123–8.
         [101] Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for
              advanced lithium ion batteries. Mater Sci Eng R Rep 2012;73(5–6):51–65.
         [102] Legagneur V, An Y, Mosbah A, Portal R, Le Gal La Salle A, Verbaere A, et al. LiMBO 3
              (M¼Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion proper-
              ties. Solid State Ionics 2001;139(1–2):37–46.
         [103] Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, et al. A 3.6 V
              lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat
              Mater 2010;9(1):68–74.
         [104] Yan H, Wu X, Li Y. Preparation and characterization of conducting polyaniline-coated
              LiVPO 4 F nanocrystals with core-shell structure and its application in lithium-ion batte-
              ries. Electrochim Acta 2015;182:437–44.
         [105] Muraliganth T, Stroukoff KR, Manthiram A. Microwave-solvothermal synthesis of
              nanostructured Li 2 MSiO 4 /C (M ¼ Mn and Fe) cathodes for lithium-ion batteries. Chem
              Mater 2010;22(20):5754–61.
         [106] Wang J, Li X, Wang Z, Guo H, Li Y, He Z, et al. Enhancement of electrochemical per-
              formance of Al-doped LiVPO 4 F using AlF 3 as aluminum source. J Alloys Compd
              2013;581:836–42.
   300   301   302   303   304   305   306   307   308   309   310