Page 303 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 303
272 Polymer-based Nanocomposites for Energy and Environmental Applications
[51] Srour H, Chancelier L, Bolimowska E, Gutel T, Mailley S, Rouault H, et al. Ionic liquid-
based electrolytes for lithium-ion batteries: review of performances of various electrode
systems. J Appl Electrochem 2016;46(2):149–55.
[52] Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, et al. Dendrite-free lithium depo-
sition via self-healing electrostatic shield mechanism. J Am Chem Soc 2013;135
(11):4450–6.
[53] Aryanfar A, Brooks D, Merinov BV, Goddard WA, Colussi AJ, Hoffmann MR. Dynamics
of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo
calculations. J Phys Chem Lett 2014;5(10):1721–6.
[54] Zhang J-G, Xu W, Henderson WA. Characterization and modeling of lithium dendrite
growth. lithium metal anodes and rechargeable lithium metal batteries. Cham: Springer
International Publishing; 2017. p. 5–43.
[55] Love CT, Baturina OA, Swider-Lyons KE. Observation of lithium dendrites at ambient
temperature and below. ECS Electrochem Lett 2015;4(2):A24–7.
[56] Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene
oxide). Polymer 1973;14(11):589.
[57] Armand M. The history of polymer electrolytes. Solid State Ionics 1994;69(3):309–19.
[58] Karan NK, Pradhan DK, Thomas R, Natesan B, Katiyar RS. Solid polymer electrolytes
based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–
LiCF 3 SO 3 ): ionic conductivity and dielectric relaxation. Solid State Ionics 2008;179
(19–20):689–96.
[59] Cheng H, Zhu C, Huang B, Lu M, Yang Y. Synthesis and electrochemical characterization
of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta
2007;52(19):5789–94.
[60] Kataoka H, Saito Y, Tabuchi M, Wada Y, Sakai T. Ionic conduction mechanism of PEO-
type polymer electrolytes investigated by the carrier diffusion phenomenon using PGSE-
NMR. Macromolecules 2002;35(16):6239–44.
[61] Dam T, Jena SS, Pradhan DK. The ionic transport mechanism and coupling between the
ion conduction and segmental relaxation processes of PEO 20 -LiCF 3 SO 3 based ion con-
ducting polymer clay composites. Phys Chem Chem Phys 2016;18(29):19955–65.
[62] Olsen I, Koksbang R, Skou E. Transference number measurements on a hybrid polymer
electrolyte. Electrochim Acta 1995;40(11):1701–6.
[63] Li X, Zhao Y, Cheng L, Yan M, Zheng X, Gao Z, et al. Enhanced ionic conductivity of
poly(ethylene oxide) (PEO) electrolyte by adding mesoporous molecular sieve LiAlSBA.
J Solid State Electrochem 2005;9(9):609–15.
[64] Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q. Polymer-supported nanocomposites
for environmental application: a review. Chem Eng J 2011;170(2–3):381–94.
[65] Manuel Stephan A, Nahm KS. Review on composite polymer electrolytes for lithium bat-
teries. Polymer 2006;47(16):5952–64.
[66] Wu B, Wang L, Li Z, Zhao M, Chen K, Liu S, et al. Performance of “polymer-in-salt”
electrolyte PAN-LiTFSI enhanced by graphene oxide filler. J Electrochem Soc
2016;163(10):A2248–52.
[67] Łasi nska AK, Marzantowicz M, Dygas JR, Krok F, Florja nczyk Z, Tomaszewska A, et al.
Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-
butyl acrylate) and lithium salts. Electrochim Acta 2015;169:61–72.
[68] Lin K-J, Li K, Maranas JK. Differences between polymer/salt and single ion conductor
solid polymer electrolytes. RSC Adv 2013;3(5):1564–71.
[69] Oh H, Xu K, Yoo HD, Kim DS, Chanthad C, Yang G, et al. Poly(arylene ether)-based
single-ion conductors for lithium-ion batteries. Chem Mater 2016;28(1):188–96.