Page 308 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 308
Polymer nanocomposite materials in energy storage: Properties and applications 277
[145] Yang J, Wang J, Wang D, Li X, Geng D, Liang G, et al. 3D porous LiFePO 4 /graphene
hybrid cathodes with enhanced performance for Li-ion batteries. J Power Sources
2012;208:340–4.
[146] Chen W-M, Qie L, Yuan L-X, Xia S-A, Hu X-L, Zhang W-X, et al. Insight into the
improvement of rate capability and cyclability in LiFePO 4 /polyaniline composite cath-
ode. Electrochim Acta 2011;56(6):2689–95.
[147] Gong C, Deng F, Tsui C-P, Xue Z, Ye YS, Tang C-Y, et al. PANI-PEG copolymer mod-
ified LiFePO 4 as a cathode material for high-performance lithium ion batteries. J Mater
Chem A 2014;2(45):19315–23.
[148] Wakayama H, Yonekura H, Kawai Y. Three-dimensional bicontinuous nanocomposite
from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery
cathode. Chem Mater 2016;28(12):4453–9.
[149] Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA,
Koshechko VG, et al. Mechanochemically prepared ternary hybrid cathode material
for lithium batteries. Electrochim Acta 2013;109:866–73.
[150] Ha J-S, Lee J-M, Lee H-R, Huh P, Jo N-J. Polymer nanocomposite electrode consisting of
polyaniline and modified multi-walled carbon nanotube for rechargeable battery.
J Nanosci Nanotechnol 2015;15(11):8977–83.
[151] Arjomandi J, Keramat Irad Mossa N, Jaleh B. Electrochemical synthesis and in situ
spectroelectrochemistry of conducting NMPy-TiO 2 and ZnO polymer nanocomposites
for Li secondary battery applications. J Appl Polym Sci 2015;132(8).
[152] Wu YP, Rahm E, Holze R. Carbon anode materials for lithium ion batteries. J Power
Sources 2003;114(2):228–36.
[153] Roy P, Srivastava SK. Nanostructured anode materials for lithium ion batteries. J Mater
Chem A 2015;3(6):2454–84.
[154] Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C.
Review on recent progress of nanostructured anode materials for Li-ion batteries.
J Power Sources 2014;257:421–43.
[155] An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood Iii DL. The state of understanding of
the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to
formation cycling. Carbon 2016;105:52–76.
[156] DiLeo RA, Castiglia A, Ganter MJ, Rogers RE, Cress CD, Raffaelle RP, et al. Enhanced
capacity and rate capability of carbon nanotube based anodes with titanium contacts for
lithium ion batteries. ACS Nano 2010;4(10):6121–31.
[157] Subramanian V, Zhu H, Wei B. High rate reversibility anode materials of lithium batte-
ries from vapor-grown carbon nanofibers. J Phys Chem B 2006;110(14):7178–83.
[158] Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous
carbon (CMK-3) with high reversible specific energy capacity and good cycling perfor-
mance. Adv Mater 2003;15(24):2107–11.
[159] Cohn AP, Oakes L, Carter R, Chatterjee S, Westover AS, Share K, et al. Assessing the
improved performance of freestanding, flexible graphene and carbon nanotube hybrid
foams for lithium ion battery anodes. Nanoscale 2014;6(9):4669–75.
[160] Loveridge MJ, Lain MJ, Johnson ID, Roberts A, Beattie SD, Dashwood R, et al. Towards
high capacity Li-ion batteries based on silicon-graphene composite anodes and sub-
micron V-doped LiFePO 4 cathodes. Sci Rep 2016;6:37787.
[161] Ferg E, Gummow RJ, de Kock A, Thackeray MM. Spinel anodes for lithium-ion batte-
ries. J Electrochem Soc 1994;141(11):L147–50.
[162] Nitta N, Yushin G. High-capacity anode materials for lithium-ion batteries: choice of
elements and structures for active particles. Part Part Syst Charact 2014;31(3):317–36.