Page 310 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 310
Polymer nanocomposite materials in energy storage: Properties and applications 279
[184] Chen R, He Z, Li L, Wu F, Xu B, Xie M. Pore size effect of carbon electrodes on the
electrochemical double-layer capacitance in LiTFSI/2-oxazolidinone complex electro-
lyte. J Phys Chem C 2012;116(3):2594–9.
[185] Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P. Relation between the
ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 2008;130
(9):2730–1.
[186] Chen T, Dai L. Carbon nanomaterials for high-performance supercapacitors. Mater
Today 2013;16(7–8):272–80.
[187] Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys
2007;9(15):1774–85.
[188] Yan Q-L, Gozin M, Zhao F-Q, Cohen A, Pang S-P. Highly energetic compositions based
on functionalized carbon nanomaterials. Nanoscale 2016;8(9):4799–851.
[189] Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc
Rev 2009;38(9):2520–31.
[190] Zhu J, Yang D, Yin Z, Yan Q, Zhang H. Graphene and graphene-based materials for
energy storage applications. Small 2014;10(17):3480–98.
[191] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev
2006;106(3):1105–36.
[192] Odom TW, Huang J-L, Kim P, Lieber CM. Structure and electronic properties of carbon
nanotubes. J Phys Chem B 2000;104(13):2794–809.
[193] Izadi-Najafabadi A, Yamada T, Futaba DN, Yudasaka M, Takagi H, Hatori H, et al.
High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube
composite. ACS Nano 2011;5(2):811–9.
[194] Dai L, Chang DW, Baek J-B, Lu W. Carbon nanomaterials for advanced energy conver-
sion and storage. Small 2012;8(8):1130–66.
[195] Chee WK, Lim HN, Zainal Z, Huang NM, Harrison I, Andou Y. Flexible graphene-based
supercapacitors: a review. J Phys Chem C 2016;120(8):4153–72.
[196] Sivakkumar SR, Kim WJ, Choi J-A, MacFarlane DR, Forsyth M, Kim D-W. Electro-
chemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon
nanotube composite as an electrode material for aqueous redox supercapacitors.
J Power Sources 2007;171(2):1062–8.
[197] Huang F, Lou F, Chen D. Exploring aligned-carbon-nanotubes@polyaniline arrays on
household Al as supercapacitors. ChemSusChem 2012;5(5):888–95.
[198] Imani A, Farzi G. Facile route for multi-walled carbon nanotube coating with poly-
aniline: tubular morphology nanocomposites for supercapacitor applications. J Mater
Sci Mater Electron 2015;26(10):7438–44.
[199] Jurewicz K, Delpeux S, Bertagna V, B eguin F, Frackowiak E. Supercapacitors from nan-
otubes/polypyrrole composites. Chem Phys Lett 2001;347(1–3):36–40.
[200] Shi K, Zhitomirsky I. Fabrication of polypyrrole-coated carbon nanotubes using oxidant–
surfactant nanocrystals for supercapacitor electrodes with high mass loading and
enhanced performance. ACS Appl Mater Interfaces 2013;5(24):13161–70.
[201] Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev
2010;110(1):132–45.
[202] Khan MF, Iqbal MZ, Iqbal MW, Eom J. Improving the electrical properties of graphene
layers by chemical doping. Sci Technol Adv Mater 2014;15(5). 055004.
[203] Zhang K, Zhang LL, Zhao XS, Wu J. Graphene/polyaniline nanofiber composites as sup-
ercapacitor electrodes. Chem Mater 2010;22(4):1392–401.
[204] Wang W, Hao Q, Lei W, Xia X, Wang X. Graphene/SnO 2 /polypyrrole ternary
nanocomposites as supercapacitor electrode materials. RSC Adv 2012;2
(27):10268–74.