Page 313 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 313

282                Polymer-based Nanocomposites for Energy and Environmental Applications

         [245] Tang H, Peikang S, Jiang SP, Wang F, Pan M. A degradation study of Nafion proton
              exchange membrane of PEM fuel cells. J Power Sources 2007;170(1):85–92.
         [246] Luo Z, Gong Y, Liao X, Pan Y, Zhang H. Nanocomposite membranes modified by
              graphene-based materials for anion exchange membrane fuel cells. RSC Adv 2016;6
              (17):13618–25.
         [247] Tohidian M, Ghaffarian SR, Nouri M, Jaafarnia E, Haghighi AH. Polyelectrolyte
              nanocomposite membranes using imidazole-functionalized nanosilica for fuel cell appli-
              cations. J Macromol Sci Part B Phys 2015;54(1):17–31.
         [248] Chen J, Guo Q, Li D, Tong J, Li X. Properties improvement of SPEEK based proton
              exchange membranes by doping of ionic liquids and Y 2 O 3 . Prog Nat Sci Mater Int
              2012;22(1):26–30.
         [249] Cele N, Ray SS. Recent progress on Nafion-based nanocomposite membranes for fuel
              cell applications. Macromol Mater Eng 2009;294(11):719–38.
                                                         ®
         [250] Jiang R, Kunz HR, Fenton JM. Composite silica/Nafion  membranes prepared by
              tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells.
              J Membr Sci 2006;272(1):116–24.
         [251] Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, et al. Function and
              characterization of metal oxide Nafion composite membranes for elevated-temperature
              H 2 /O 2 PEM fuel cells. Chem Mater 2006;18(9):2238–48.
                                                                        ®
         [252] Ramani V, Kunz HR, Fenton JM. Metal dioxide supported heteropolyacid/Nafion com-
              posite membranes for elevated temperature/low relative humidity PEFC operation.
              J Membr Sci 2006;279(1–2):506–12.
         [253] Sood R, Iojoiu C, Espuche E, Gouanv  e F, Gebel G, Mendil-Jakani H, et al. Proton con-
              ducting ionic liquid doped Nafion membranes: nano-structuration, transport properties
              and water sorption. J Phys Chem C 2012;116(46):24413–23.
         [254] Sahu AK, Ketpang K, Shanmugam S, Kwon O, Lee S, Kim H. Sulfonated graphene–
              Nafion composite membranes for polymer electrolyte fuel cells operating under reduced
              relative humidity. J Phys Chem C 2016;120(29):15855–66.
         [255] Mahmood N, Zhang C, Yin H, Hou Y. Graphene-based nanocomposites for energy stor-
              age and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A
              2014;2(1):15–32.
         [256] Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M. Functionalized graphene oxide
              nanocomposite membrane for low humidity and high temperature proton exchange mem-
              brane fuel cells. J Phys Chem C 2011;115(42):20774–81.
         [257] Liu Y-L, Su Y-H, Chang C-M, Suryani, Wang D-M, Lai J-Y. Preparation and applica-
              tions of Nafion-functionalized multiwalled carbon nanotubes for proton exchange mem-
              brane fuel cells. J Mater Chem 2010;20(21):4409–16.
         [258] Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y. Proton exchange membrane
              fuel cells with carbon nanotube based electrodes. Nano Lett 2004;4(2):345–8.
         [259] Cele NP, Sinha Ray S, Pillai SK, Ndwandwe M, Nonjola S, Sikhwivhilu L, et al. Carbon
              nanotubes based Nafion composite membranes for fuel cell applications. Fuel Cell
              2010;10(1):64–71.
   308   309   310   311   312   313   314   315   316   317   318