Page 307 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 307
276 Polymer-based Nanocomposites for Energy and Environmental Applications
[127] Nesper R, Spahr ME, Niederberger M, Bitterli P. Nanotubes, verwendung solcher nan-
otubes sowie verfahren zu deren herstellung. Google Patents.
[128] Patrissi CJ, Martin CR. Sol-gel-based template synthesis and Li-insertion rate perfor-
mance of nanostructured vanadium pentoxide. J Electrochem Soc 1999;146
(9):3176–80.
[129] Wang Y, Takahashi K, Shang H, Cao G. Synthesis and electrochemical properties of
vanadium pentoxide nanotube arrays. J Phys Chem B 2005;109(8):3085–8.
[130] Takahashi K, Wang Y, Cao G. Ni V 2 O 5 nH 2 O core shell nanocable arrays for
enhanced electrochemical intercalation. J Phys Chem B 2005;109(1):48–51.
[131] Huang X, Rui X, Hng HH, Yan Q. Vanadium pentoxide-based cathode materials for
lithium-ion batteries: morphology control, carbon hybridization, and cation doping. Part
Part Syst Charact 2015;32(3):276–94.
[132] Ferreira M, Zucolotto V, Huguenin F, Torresi RM, Oliveira ON. Layer-by-layer nano-
structured hybrid films of polyaniline and vanadium oxide. J Nanosci Nanotechnol
2002;2(1):29–32.
[133] Ponzio EA, Benedetti TM, Torresi RM. Electrochemical and morphological stabilization
of V 2 O 5 nanofibers by the addition of polyaniline. Electrochim Acta 2007;52
(13):4419–27.
[134] Zhao H, Yuan A, Liu B, Xing S, Wu X, Xu J. High cyclic performance of V 2 O 5 @PPy
composite as cathode of recharged lithium batteries. J Appl Electrochem 2012;42
(3):139–44.
[135] Chao D, Xia X, Liu J, Fan Z, Ng CF, Lin J, et al. A V 2 O 5 /conductive-polymer core/shell
nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and free-
standing cathode for lithium-ion batteries. Adv Mater 2014;26(33):5794–800.
[136] Zhang Z-J, Wang J-Z, Chou S-L, Liu H-K, Ozawa K, Li H-J. Polypyrrole-coated
α-LiFeO 2 nanocomposite with enhanced electrochemical properties for lithium-ion bat-
teries. Electrochim Acta 2013;108:820–6.
[137] Trinh ND, Saulnier M, Lepage D, Schougaard SB. Conductive polymer film supporting
LiFePO 4 as composite cathode for lithium ion batteries. J Power Sources
2013;221:284–9.
[138] Bai Y-M, Qiu P, Wen Z-L, Han S-C. Improvement of electrochemical performances of
LiFePO 4 cathode materials by coating of polythiophene. J Alloys Compd 2010;508
(1):1–4.
[139] Xu X, Deng S, Wang H, Liu J, Yan H. Research progress in improving the cycling sta-
bility of high-voltage LiNi 0.5 Mn 1.5 O 4 cathode in lithium-ion battery. Nano-Micro Lett
2017;9(2):22.
[140] Nova ´kP,M€ uller K, Santhanam KSV, Haas O. Electrochemically active polymers for
rechargeable batteries. Chem Rev 1997;97(1):207–82.
[141] Wu H, Wang K, Meng Y, Lu K, Wei Z. An organic cathode material based on a pol-
yimide/CNT nanocomposite for lithium ion batteries. J Mater Chem A 2013;1
(21):6366–72.
[142] Sun M, Li H, Wang J, Wang G. Promising graphene/carbon nanotube foam@π-
conjugated polymer self-supporting composite cathodes for high-performance recharge-
able lithium batteries. Carbon 2015;94:864–71.
[143] Huang Y, Liang J, Chen Y. An overview of the applications of Graphene-based materials
in supercapacitors. Small 2012;8(12):1805–34.
[144] Sun YK, Han JM, Myung ST, Lee SW, Amine K. Significant improvement of high volt-
age cycling behavior AlF 3 -coated LiCoO 2 cathode. Electrochem Commun 2006;8
(5):821–6.