Page 302 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 302

Polymer nanocomposite materials in energy storage: Properties and applications  271

           [29] Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and elec-
               trodes. J Power Sources 2011;196(1):1–12.
           [30] Yin Z, Ding Y, Zheng Q, Guan L. CuO/polypyrrole core–shell nanocomposites as anode
               materials for lithium-ion batteries. Electrochem Commun 2012;20:40–3.
           [31] Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi MC. Graphene-based nanocomposites for
               energy storage. Adv Energy Mater. 2016;6(16):1502159-n/a.
           [32] Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes—a review.
               J Materiomics 2016;2(1):37–54.
           [33] Utracki LA, Sepehr M, Boccaleri E. Synthetic, layered nanoparticles for polymeric
               nanocomposites (PNCs). Polym Adv Technol 2007;18(1):1–37.
           [34] Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, et al. Polymer nanocomposites for energy
               storage, energy saving, and anticorrosion. J Mater Chem A 2015;3(29):14929–41.
           [35] Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries.
               J Mater Chem A 2016;4(26):10038–69.
           [36] Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources
               2010;195(9):2419–30.
           [37] Arya A, Sharma AL. Polymer electrolytes for lithium ion batteries: a critical study. Ionics
               2017;23(3):497–540.
           [38] Tominaga Y. Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and
               its derivatives. Polym J 2017;49(3):291–9.
           [39] Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based
               batteries and beyond. Green Energy Environ 2016;1(1):18–42.
           [40] Cekic-Laskovic I, von Aspern N, Imholt L, Kaymaksiz S, Oldiges K, Rad BR, et al. Syn-
               ergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries.
               Top Curr Chem 2017;375(2):37.
           [41] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev
               2004;104(10):4303–418.
           [42] Cheng X-B, Zhang R, Zhao C-Z, Wei F, Zhang J-G, Zhang Q. A review of solid electrolyte
               interphases on lithium metal anode. Adv Sci 2016;3(3):1500213.
           [43] Owejan JE, Owejan JP, DeCaluwe SC, Dura JA. Solid electrolyte interphase in Li-ion bat-
               teries: evolving structures measured in situ by neutron reflectometry. Chem Mater 2012;24
               (11):2133–40.
           [44] Smith KA, Smart MC, Prakash GKS, Ratnakumar BV. Electrolytes containing fluorinated
               ester co-solvents for low-temperature Li-ion cells. ECS Trans 2008;11(29):91–8.
           [45] Ue M, Sasaki Y, Tanaka Y, Morita M. Nonaqueous electrolytes with advances in solvents.
               In: Jow TR, Xu K, Borodin O, Ue M, editors. Electrolytes for lithium and lithium-ion bat-
               teries. New York, NY: Springer; 2014. p. 93–165.
           [46] Chang Z, Li C, Wang Y, Chen B, Fu L, Zhu Y, et al. A lithium ion battery using an aqueous
               electrolyte solution. Sci Rep 2016;6: 28421.
           [47] Kim H, Hong J, Park K-Y, Kim H, Kim S-W, Kang K. Aqueous rechargeable Li and Na
               ion batteries. Chem Rev 2014;114(23):11788–827.
           [48] Wang X, Hou Y, Zhu Y, Wu Y, Holze R. An aqueous rechargeable lithium battery using
               coated Li metal as anode. Sci Rep 2013;3:1401.
           [49] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, et al. “Water-in-salt” electrolyte enables
               high-voltage aqueous lithium-ion chemistries. Science 2015;350(6263):938–43.
           [50] Lane GH, Bayley PM, Clare BR, Best AS, MacFarlane DR, Forsyth M, et al. Ionic liquid
               electrolyte for lithium metal batteries: physical, electrochemical, and interfacial studies of
               N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide. J Phys Chem C 2010;114
               (49):21775–85.
   297   298   299   300   301   302   303   304   305   306   307