Page 415 - Power Electronic Control in Electrical Systems
P. 415

//SYS21/F:/PEC/REVISES_10-11-01/075065126-CH009.3D ± 394 ± [373±406/34] 17.11.2001 10:33AM







               394 Examples, problems and exercises

                           From open-circuit test
                                         20e  j arc cos(0:5)    230   2
                                  Y sh ˆ      66         66   ˆ 0:01148   j0:02276S
                                       0:25   p   10 3
                                               
                                               3
                           giving R c ˆ 87:11 
 and X m ˆ 43:94 
.
                           From short-circuit test
                                       230
                                 0:02   p 
                                         3  j arc cos(0:08)   j85:411
                            Z se ˆ        e         ˆ 0:02213e     ˆ 0:00177 ‡ j0:02206
                                    120
                           giving R e ˆ 0:00177 
 and X e ˆ 0:002206 
.
                      21. (i) Draw a circuit diagram and a phasor diagram showing the use of two
                            wattmeters to measure the total power in a three-phase three-wire AC load.
                         (ii) Derive an expression for the power factor of a balanced three-phase AC load
                            in terms of the wattmeter readings P 1 and P 2 .
                        (iii) An unbalanced delta-connected load on a three-phase 415-V 50-Hz supply
                            has the following impedances in each phase:

                                  Z ab ˆ 15 ‡ j0 
  Z bc ˆ 1:2 ‡ j16:5 
  Z ca ˆ j18:2 
:
                            Determine the three-line currents in magnitude and phase, and the readings
                            of two wattmeters connected such that P 1 measures I a and V ac , while P 2
                            measures I b and V bc . Take V ab as reference phasor.

                         (i)












                      Fig. 9.16

                        (ii) P 1 ˆ RefV ac I gˆ V L I L cos (30   f)


                                        a
                            P 2 ˆ RefV bc I gˆ V L I L cos (30 ‡ f)


                                        b
                                                             p
                                                               3V L I L cos f
                            P 1 ‡ P 2 ˆ V L I L   2 cos 30 cos ( f) ˆ
                            P 1   P 2 ˆ V L I L   2 sin 30 sin ( f) ˆ V L I L sin f

                                     p
                            \ tan f ˆ  3(P 1   P 2 )/(P 1 ‡ P 2 ) .. . : then power factor ˆ cos f.
                        (iii) I ab ˆ 415/(15 ‡ j0) ˆ 27:6667 ‡ j0 A
                            I bc ˆ 415e  j120   /(1:2 ‡ j16:5) ˆ 415e  120   /16:54e j85:84    ˆ 25:085e  j205:84   A
                            I ca ˆ 415e j120    /(   j18:2) ˆ 22:80e j210    ˆ 19:75   j11:40A
   410   411   412   413   414   415   416   417   418   419   420