Page 84 - Power Electronic Control in Electrical Systems
P. 84

//SYS21/F:/PEC/REVISES_10-11-01/075065126-CH002.3D ± 73 ± [31±81/51] 17.11.2001 9:49AM







                                                             Power electronic control in electrical systems 73

                      fundamental frequency in Hz and o ˆ 2pf . According to Fourier the coefficients a m
                      and b m can be determined from the original waveform by the integrations
                                                 2  Z  2p
                                           a m ˆ       u(ot)cos (mot) d(ot)
                                                2p  0                                    (2:59)
                                                 2  Z  2p
                                           b m ˆ       u(ot) sin (mot) d(ot)
                                                2p  0
                      and the DC value from the integral
                                                     1  Z  2p
                                                u 0 ˆ      u(ot) d(ot)                   (2:60)
                                                    2p  0

                      2.12.1   Harmonic power
                      In general p ˆ ui so

                                 1  Z  2p
                          P avg ˆ      p(ot) d(ot)
                                2p  0
                                 1  Z  2p X p         p 
                                        1
                              ˆ             2V m cos (mot)    2I n cos (not ‡ f ) d(ot)
                                                                         n
                                2p  0  mˆ0
                                       nˆ0
                                 1    Z  2p
                                X   1                                                    (2:61)
                              ˆ           V m I n fcos [(m ‡ n)ot ‡ f ] ‡ cos [(m   n)ot   f ]g
                                                                                  n
                                                               n
                                    2p
                                 mˆ0   0
                                 nˆ0
                                 1
                                X
                              ˆ     V m I m cos f m
                                mˆ0
                              ˆ V 0 I 0 ‡ V 1 I 1 cos f ‡ V 2 I 2 cos f ‡ ...
                                                1
                                                            2
                      Products of the mth voltage harmonic and the nth current harmonic integrate to zero
                      over one period, if m 6ˆ n, leaving only the products of harmonics of the same order.
                      The power associated with each harmonic can be determined individually with an
                      equation of the form VI cos f, where V and I are the rms voltage and current of that
                      harmonic and f is the phase angle between them.
                      2.12.2   RMS values in the presence of harmonics
                      If the current flows through a resistor R, V m ˆ RI m and the average power dissipa-
                      tion is

                                                                      s 
                                              1                          1
                                             X   2     2                X   2
                                       P avg ˆ  I R ˆ I R  where  I ˆ      I m           (2:62)
                                                 m
                                             mˆ0                        mˆ0
                      I is the rms current and equation (2.62) is consistent with the definition of rms current
                                                       s 
                                                         1  Z  T
                                                               2
                                                 I rms ˆ      i (t)dt                    (2:63)
                                                         T  0
   79   80   81   82   83   84   85   86   87   88   89