Page 11 - Practical Control Engineering a Guide for Engineers, Managers, and Practitioners
P. 11

Contents    xi


                         8-3-3  Moving Average Stochastic
                              Sequences   . . . . . . . . . . . . . . . . . . . . . . .  220
                         8-3-4  Unstable Nonstationary Stochastic
                              Sequences  . . . . . . . . . . . . . . . . . . . . . . .  223
                         8-3-5  Multidimensional Stochastic Processes
                              and the Covariance  . . . . . . . . . . . . . . .  225
                    8-4  Populations, Realizations, Samples, Estimates,
                         and Expected Values  . . . . . . . . . . . . . . . . . . . .  226
                         8-4-1  Realizations  . . . . . . . . . . . . . . . . . . . . .  226
                         8-4-2  Expected Value   . . . . . . . . . . . . . . . . . .  227
                         8-4-3  Ergodicity and Stationarity  . . . . . . . .  228
                         8-4-4  Applying the Expectation
                               Operator  . . . . . . . . . . . . . . . . . . . . . . . .  228
                    8-5  Comments on Stochastic Disturbances and
                         Difficulty of Control   . . . . . . . . . . . . . . . . . . . .  230
                         8-5-1  White Noise  . . . . . . . . . . . . . . . . . . . . .  230
                         8-5-2  Colored Noise  . . . . . . . . . . . . . . . . . . .  231
                    8-6  Summary    . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234
               9  The Discrete Time Domain and the
                   Z-Transform  • • • • • • • • • • • • • • • . . . . . • • • . . • . • • . • .  235
                    9-1  Discretizing the First-Order Model       236
                    9-2  Moving to the Z-Domain via the
                         Backshift Operator  . . . . . . . . . . . . . . . . . . . . . .  238
                    9-3  Sampling and Zero-Holding  . . . . . . . . . . . . .  239
                    9-4  Recognizing the First-Grder Model as a
                         Discrete Trme Filter  . . . . . . . . . . . . . . . . . . . . .  243
                    9-5  Descretizing the FOWDT Model  . . . . . . . . . .  244
                    9-6  The Proportional-Integral Control Equation
                         in the Discrete Time Domain  . . . . . . . . . . . . .  244
                    9-7  Converting the Proportional-Integral Control
                         Algorithm to Z-Transforms   . . . . . . . . . . . . . .  246
                    9-8  The PlfD Control Equation in the Discrete
                         Trme Domain   . . . . . . . . . . . . . . . . . . . . . . . . . .  247
                    9-9  Using the Laplace Transform to Design
                         Control Algorithms-the Q Method  . . . . . . .  249
                         9-9-1  Developing the Proportional-Integral
                              Control Algorithm  . . . . . . . . . . . . . . . .  249
                         9-9-2  Developing a PID-Like Control
                              Algorithm  . . . . . . . . . . . . . . . . . . . . . . .  252
                   9-10  Using the Z-Transform to Design Control
                         Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253
                   9-11  Designing a Control Algorithm
                         for a Dead-Trme Process  . . . . . . . . . . . . . . . . .  256
                   9-12  Moving to the Frequency Domain   . . . . . . . .  259
   6   7   8   9   10   11   12   13   14   15   16