Page 12 - Practical Control Engineering a Guide for Engineers, Managers, and Practitioners
P. 12

xii   Contents


                         9-12-1  The First-Order Process Model  . . . .  260
                         9-12-2  The Ripple  . . . . . . . . . . . . . . . . . . . . . .  261
                         9-12-3  Sampling and Replication   . . . . . . . .  262
                   9-13  Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
                         9-13-1  Autogressive Filters  . . . . . . . . . . . . . .  263
                         9-13-2  Moving Average Filters  . . . . . . . . . . .  265
                         9-13-3  A Double-Pass Filter  . . . . . . . . . . . . .  267
                         9-13-4  High-Pass Filters  . . . . . . . . . . . . . . . .  269
                   9-14  Frequency Domain Filtering   . . . . . . . . . . . . .  271
                   9-15  The Discrete Trme State-Space Equation  . . .  273
                   9-16  Determining Model Parameters from
                         Experimental Data  . . . . . . . . . . . . . . . . . . . . . .  274
                         9-16-1  First-Order Models   . . . . . . . . . . . . . .  274
                         9-16-2  Third-Order Models   . . . . . . . . . . . . .  276
                         9-16-3  A Practical Method   . . . . . . . . . . . . . .  278
                   9-17  Process Identification with White
                         Noise mputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
                   9-18  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283
              10  Estimating the State and Using It for Control  . . . .  285
                   10-1  An Elementary Presentation of the
                         Kalman Filter  . . . . . . . . . . . . . . . . . . . . . . . . . .  286
                         10-1-1  The Process Model  . . . . . . . . . . . . . . .  286
                         10-1-2  The Premeasurement and
                               Postmeasurement Equations  . . . . . .  287
                         10-1-3  The Scalar Case   . . . . . . . . . . . . . . . . .  288
                         10-1-4  A Two-Dimensional Example        288
                         10-1-5  The Propagation of the Covariances  . . .  289
                         10-1-6  The Kalman Filter Gain  . . . . . . . . . . .  290
                   10-2  Estimating the Underdamped Process
                         State  ...................................  291
                   10-3  The Dynamics of the Kalman Filter and an
                         Alternative Way to Find the Gain  . . . . . . . . .  296
                         10-3-1  The Dynamics of a Predictor
                               Estimator  . . . . . . . . . . . . . . . . . . . . . . .  298
                   10-4  Using the Kalman Filter for Control  . . . . . . .  299
                         10-4-1  A Little Detour to Find the
                               Integral Gain  . . . . . . . . . . . . . . . . . . . .  300
                   10-5  Feeding Back the State for Control  . . . . . . . .  301
                         10-5-1  Integral Control  . . . . . . . . . . . . . . . . .  302
                         10-5-2  Duals  . . . . . . . . . . . . . . . . . . . . . . . . . .  302
                   10-6  Integral and Multidimensional Control  . . . .  303
                         10-6-1  Setting Up the Example Process and
                               Posing the Control Problem  . . . . . . .  303
                         10-6-2  Developing the Discrete Trme
                               Version  . . . . . . . . . . . . . . . . . . . . . . . . .  304
   7   8   9   10   11   12   13   14   15   16   17