Page 15 - Practical Control Engineering a Guide for Engineers, Managers, and Practitioners
P. 15

Contents    XY


                     F-4  Laplace Transform of the Impulse or Dirac
                          Delta Function  . . . . . . . . . . . . . . . . . . . . . . . .  398
                     F-5  Laplace Transform of the Exponential
                          Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  399
                     F-6  Laplace Transform of a Sinusoid   . . . . . . . .  399
                     F-7  Final Value Theorem  . . . . . . . . . . . . . . . . . . .  400
                     F-8  Laplace Transform Tables   . . . . . . . . . . . . . .  400
                     F-9  Laplace Transform of the Time Domain
                          Derivative   . . . . . . . . . . . . . . . . . . . . . . . . . . .  400
                    F-10  Laplace Transform of Higher Derivatives   401
                    F-11  Laplace Transform of an Integral   . . . . . . . .  402
                    F-12  The Laplace Transform Recipe   . . . . . . . . . .  403
                    F-13  Applying the Laplace Transform to the First-
                          Order Model: The Transfer Function  . . . . .  404
                    F-14  Applying the Laplace Transform to the First-
                          Order Model: The Impulse Response      404
                    F-15  Applying the Laplace Transform to the
                          First-Order Model: The Step Response  . . .  406
                    F-16  Partial Fraction Expansions Applied to Laplace
                          Transforms: The First-Grder Problem  . . . .  406
                    F-17  Partial Fraction Expansions Applied to Laplace
                          Transforms: The Second-Order Problem  . .  408
                    F-18  A Precursor to the Convolution Theorem   409
                    F-19  Using the Integrating Factor to Obtain the
                          Convolution Integral   . . . . . . . . . . . . . . . . . .  410
                    F-20  Application of the Laplace Transform to a
                          First-Order Partial Differential Equation   413
                    F-21  Solving the Transformed Partial Differential
                          Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414
                     F-22  The Magnitude and Phase of the Transformed
                          Partial Differential Equation  . . . . . . . . . . . .  417
                     F-23  A Brief History of the Laplace Transform   418
                     F-24  Summary   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  419
               G  Vectors and Matrices  • . . • . . . . . . . . . . . . . . • . . • . • • .  421
                     G-1  Addition and Multiplication of Matrices   423
                     G-2  Partitioning  . . . . . . . . . . . . . . . . . . . . . . . . . .  424
                     G-3  State-Space Equations and Laplace
                          Transforms  . . . . . . . . . . . . . . . . . . . . . . . . . . .  425
                     G-4  Transposes and Diagonal Matrices        427
                     G-5  Determinants, Cofactors, and Adjoints
                          of a Matrix  . . . . . . . . . . . . . . . . . . . . . . . . . . .  428
                     G-6  The Inverse Matrix  . . . . . . . . . . . . . . . . . . . .  429
                     G-7  Some Matrix Calculus  . . . . . . . . . . . . . . . . .  432
                     G-8  The Matrix Exponential Function
                          and Infinite Series  . . . . . . . . . . . . . . . . . . . . .  432
   10   11   12   13   14   15   16   17   18   19   20