Page 14 - Practical Control Engineering a Guide for Engineers, Managers, and Practitioners
P. 14

xi¥   Contents


                    A-10  A Useful Test Function  . . . . . . . . . . . . . . . . .  352
                    A-ll  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  355
               B  Complex Numbers     . . . . . . . . . . . . . • . . • . . • . . • . . . .  357
                     B-1  Complex Conjugates  . . . . . . . . . . . . . . . . . . .  359
                     B-2  Complex Numbers as Vectors or Phasors   .  360
                     8-3  Euler's Equation   . . . . . . . . . . . . . . . . . . . . . .  361
                     8-4  An Application to a Problem in Chapter 4  .  364
                     8-5  The Full Monty  . . . . . . . . . . . . . . . . . . . . . . . .  366
                     8-6  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

               C  Spectral Analysis  . . . . . . . . . • . . • . . • . . • . . • . . • . . • .  369
                     C-1  An Elementary Discussion of the Fourier
                         Transform as a Data-Fitting Problem     369
                     C-2  Partial Summary  . . . . . . . . . . . . . . . . . . . . . .  373
                     C-3  Detecting Periodic Components  . . . . . . . . .  374
                     C-4  The Line Spectrum   . . . . . . . . . . . . . . . . . . . .  374
                     C-5  The Exponential Form of the Least Squares
                          Fitting Equation  . . . . . . . . . . . . . . . . . . . . . . .  376
                     C-6  Periodicity in the Trme Domain   . . . . . . . . .  378
                     C-7  Sampling and Replication   . . . . . . . . . . . . . .  378
                    C-8  Apparent Increased Frequency Domain
                          Resolution via Padding  . . . . . . . . . . . . . . . . .  379
                     C-9  The Variance and the Discrete Fourier
                         Transform  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  380
                    C-10  Impact of Increased Frequency Resolution
                         on.  V~ability of the Power Spectrum  . . . . .  382
                    C-11  Aliasmg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  382
                    C-12  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  384

               D  Infinite and Taylor's Series  • . . • . . • . . • . . • . . • . . • .  385
                    D-1  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  387
               E  Application of the Exponential Function to
                   Differential Equations  . . . . . . . . . . • . . • . . • . . • . . . .  389
                    E-1  First-Order Differential Equations  . . . . . . . .  389
                    E-2  Partial Summary  . . . . . . . . . . . . . . . . . . . . . . .  391
                    E-3  Partial Solution of a Second-Order
                         Differential Equation  . . . . . . . . . . . . . . . . . . .  391
                    E-4  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  393
               F  The Laplace Transform  . . . . • . . • . . • . . • . . • . . • . . • .  395
                    F-1  Laplace Transform of a Constant
                         (or a Step Change)   . . . . . . . . . . . . . . . . . . . . .  396
                    F-2  Laplace Transform of a Step at a Trme
                         Greater than Zero  . . . . . . . . . . . . . . . . . . . . . .  396
                    F-3  Laplace Transform of a Delayed Quantity   397
   9   10   11   12   13   14   15   16   17   18   19