Page 272 - Process Equipment and Plant Design Principles and Practices by Subhabrata Ray Gargi Das
P. 272

10.4 Design illustration  273




               where a ¼ 0.557, b ¼ 0.32, g ¼ ( 0.51) - from Table 10.8e1, 3rd Edition, 2000 (Prentice Hall India),
               “Transport Processes and Unit Operation” by C. J. Geankoplis

                                                   N Sc ¼ 0:669
                  The solute (NH 3 ) is highly soluble in water, and hence, the mass transfer resistance is considered in
               the gas phase.


               Estimating mass transfer coefficients
               The expression and the constants for the liquid phase are taken from the same source.
                  This gives,

                                      !
                                       h                          0:22
                                   m L      0:5            1:136            0:51
                                          N                                    ¼ 0:214 m
                        H TOL ¼ q           ScL  ¼ 0:00235           ð303:1Þ
                                     l                    0:0008
                                    m
               Where N ScL is the Schmidt Number for the liquid phase

                                        m V =MW G
                                                    ð0:943=27:8Þ             3
                                  0                            ¼ 8:1 kmol = m $s
                                  y
                                 k a ¼            ¼
                                          H TOG        0:419

                                       m L =MW L
                                                                             3
                                                   ð1:136=17:95Þ
                                 0                             ¼ 0:253 kmol=m $s
                                 x
                                k a ¼           ¼
                                         H TOL         0:25
               Where MW G and MW L refer to the average molecular weight of the gas and the liquid phase
               respectively.
                  The procedure to find interphase concentration (x i ,y i ) corresponding to a point (x op ,y op )
                  on the operating line is as follows
               (1) Choose y op such that y 2 <y op <y 1 and note the corresponding x op on the operating line
               (2) Assume f ¼ 1in Eq. 10.8. This is the initial guess.
                                                                       k a
                                                                        0
                                                                        x
                                                                       k a
               (3) Draw driving force line through (x op ,y op ) with slope m ¼ð  fÞ
                                                                        0
                                                                        y
               (4) Note coordinate (x i ,y i ) at the intersection point of driving force line and equilibrium line.

                                                                    ð1   x op Þ
                                                                 ln

                                              ð1   y i Þ  1   y op
                                                                    ð1   x i Þ
                                   Recalculated                  8          9
               (5) Recalculate f as f       ¼
                                              ð1   x op Þ ð1   x i Þ  <     =
                                                                    ð1   y i Þ
                                                                 ln
                                                                  : 1   y op  ;
               (6) If fand f Recalculated differ by only a small amount, say 0.0001, note (x op ,y op ) and (x i ,y i ). Proceed
                   with calculations for a new set of (x op ,y op ) starting from Step (2)
                  Else, substitute f with f Recalculated and go to Step (3).
   267   268   269   270   271   272   273   274   275   276   277