Page 138 - Process Modelling and Simulation With Finite Element Methods
P. 138

Multiphysics                      125


          subject to

                                                                     (3.10)


          Here, nlim is the limiting dimensionless temperature that can be  achieved upon
          exhaustion of the reactant, r=O. The Peclet number, Pe, is either the thermal or
          mass Peclet number (rl or r2).
             Amundson proposed a one dimensional search to the above boundary value
          problem, starting from a guess of n(x=l) and shooting back to x=O.  In both of  the
          above cases, n,,=1.656.
             Let’s first solve the single convection-diffusion-reaction equation (3.9) using
          FEMLAB.  Because it is a boundary value problem, FEM has a natural advantage
          here.

          Start up FEMLAB and enter the Model Navigator:

                Model Navigator
                        Select I-D dimension
                        Select Chemical Engineering Module + convection and
                        diffusion
                        Element: Lagrange - quadratic
                        More>>
                        OK

          Pull down the Draw menu and select Specify Geometry.

                Draw Mode
                    0   Name: interval
                        Start: 0
                        stop: 1


          Now for the boundary conditions.  Pull  down the  Boundary menu  and  select
          Boundary Settings.

                 Boundary Mode
                        Select domain 1
                    0   Check -N.n  = Pe*( 1 -c)
                    0   Select domain 2
                    e   Select -N.n  = 0
                        Apply1 OK
   133   134   135   136   137   138   139   140   141   142   143