Page 241 - Process Modelling and Simulation With Finite Element Methods
P. 241

228        Process Modelling and Simulation with Finite Element Methods
                 @ = particle volume fraction

                                  yw  =I-t
           !                       -        $m-h        Evaporation front
            V
                                              Ym  t
                                              A
                                   h =1
                                                        Compaction front
                                                        Bottom
                                   y=o
          Figure 6.8  Schematic of the two fronts in film drying: evaporation front at the top and compaction
          front in the interior.

          There is also surfactant present in the film. This is taken as initially uniformly
          distributed at some concentration   As the solvent evaporates from the film the
          non-volatile surfactant is  trapped.  This  surfactant can either be  in  solution or
          stuck to the particles.
             In the context of these packing dynamics, the surfactant concentration is also
          changing due to adsorption on to the packed particles.  We note the following
          conditions on &, the solvent concentration:
          Initial condition:  @$  =   initial surfactant concentration is known a priori.
                           % li-”
          Boundary condition: -  = 0 , no surfactant flux across impermeable surface.




          Boundary condition: -  = 0, no  surfactant  across  material  surface  -
                           a@s G I jk-T
          non-volatile surfactant is trapped.

          Figure 6.9 shows an idealization of an adsorption isotherm for   Equation (6.8)
          is a rough representation of  the adsorption isotherm giving the typical sigmoid
          shape. Langmuir isotherms are  the  most  commonly fitted, but  as  long  as  the
          isotherm is differentiable, any will do.




          The  dynamic  adsorption  of  surfactants  in  miscible  displacement  is  a
          fundamental, recurring  situation in the chemical and petrochemical industries.
          Enhanced oil recovery by  detergent flooding has been practiced for more than
          twenty years.  Liquid chromatography, where the adsorption-desorption isotherm
          is key to separation processes, is another common example.  The desorption of
          the isotherm forced by the compaction front, however, is a unique feature of the
   236   237   238   239   240   241   242   243   244   245   246