Page 102 - Renewable Energy Devices and System with Simulations in MATLAB and ANSYS
P. 102

Three-Phase Photovoltaic Systems: Structures, Topologies, and Control        89


              41.  A. M. Hava and E. Un, A high-performance PWM algorithm for common-mode voltage reduction in
                three-phase voltage source inverters, IEEE Transactions on Power Electronics, 26, 1998–2008, 2011.
              42.  L. Mathe, H. Cornean, D. Sera, P. O. Rasmussen, and J. K. Pedersen, Unified analytical equation for the-
                oretical determination of the harmonic components of modern PWM strategies, in IECON 2011—37th
                Annual Conference on IEEE Industrial Electronics Society, pp. 1648–1653, Melbourne, VIC, 2011.
              43.  L. Mathe, F. Lungeanu, D. Sera, P. O. Rasmussen, and J. K. Pedersen, Spread spectrum modulation by
                using asymmetric-carrier random PWM, IEEE Transactions on Industrial Electronics, 59, 3710–3718,
                2012.
              44.  B. P. McGrath and D. G. Holmes, A comparison of multicarrier PWM strategies for cascaded and neutral
                point clamped multilevel inverters, in 2000 IEEE 31st Annual Power Electronics Specialists Conference,
                2000 (PESC 00), Vol. 2, pp. 674–679, 2000.
              45.  A. Lewicki, Z. Krzeminski, and H. Abu-Rub, Space-vector pulsewidth modulation for three-level NPC
                converter with the neutral point voltage control, IEEE Transactions on Industrial Electronics, 58, 5076–
                5086, 2011.
              46.  J. Pou, J. Zaragoza, S. Ceballos, M. Saeedifard, and D. Boroyevich, A carrier-based PWM strategy with
                zero-sequence voltage injection for a three-level neutral-point-clamped converter, IEEE Transactions on
                Power Electronics, 27, 642–651, 2012.
              47.  R. Teodorescu, M. Liserre, and P. Rodriguez, Eds., Grid Converters for Photovoltaic and Wind Power
                Systems. Chichester, West Sussex, U.K.: Wiley-IEEE Press, 2011.
              48.  M. K. Ghartemani, S. A. Khajehoddin, P. K. Jain, and A. Bakhshai, Problems of startup and phase jumps
                in PLL systems, IEEE Transactions on Power Electronics, 27, 1830–1838, 2012.
              49.  M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, A new single-phase PLL structure based on second
                order generalized integrator, in 37th IEEE Power Electronics Specialists Conference, 2006 (PESC '06),
                pp. 1–6, 2006.
              50.  I. Carugati, P. Donato, S. Maestri, D. Carrica, and M. Benedetti, Frequency adaptive PLL for polluted
                single-phase grids, IEEE Transactions on Power Electronics, 27, 2396–2404, 2012.
              51.  C. Se-Kyo, A phase tracking system for three phase utility interface inverters, IEEE Transactions on
                Power Electronics, 15, 431–438, 2000.
              52.  P. Rodriguez, A. Luna, R. S. Munoz-Aguilar, I. Etxeberria-Otadui, R. Teodorescu, and F. Blaabjerg,
                A stationary reference frame grid synchronization system for three-phase grid-connected power convert-
                ers under adverse grid conditions, IEEE Transactions on Power Electronics, 27, 99–112, 2012.
              53.  N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power Electronics and Control Techniques for
                Maximum Energy Harvesting in Photovoltaic Systems. London, U.K.: CRC Press, 2012.
              54.  D. Sera, L. Mathe, T. Kerekes, S. V. Spataru, and R. Teodorescu, On the perturb-and-observe and incre-
                mental conductance MPPT methods for PV systems, IEEE Journal of Photovoltaics, 3, 1070–1078, July
                2013.
              55.  L. V. Hartmann, M. A. Vitorino, M. B. R. Correa, and A. M. N. Lima, Combining model-based and heu-
                ristic techniques for fast tracking the maximum-power point of photovoltaic systems, IEEE Transactions
                on Power Electronics, 28, 2875–2885, 2013.
              56.  C. Chian-Song, T-S fuzzy maximum power point tracking control of solar power generation systems,
                IEEE Transactions on Energy Conversion, 25, 1123–1132, 2010.
              57.  M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, Maximum power point tracking of mul-
                tiple photovoltaic arrays: A PSO approach, IEEE Transactions on Aerospace and Electronic Systems, 47,
                367–380, 2011.
              58.  G. Petrone, G. Spagnuolo, and M. Vitelli, An analog technique for distributed MPPT PV applications,
                IEEE Transactions on Industrial Electronics, 59, 4713–4722, 2012.
              59.  R. Alonso, E. Roman, A. Sanz, V. E. M. Santos, and P. Ibanez, Analysis of inverter-voltage influence on
                distributed MPPT architecture performance, IEEE Transactions on Industrial Electronics, 59, 3900–
                3907, 2012.
              60.  N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, Distributed maximum power point tracking
                of photovoltaic arrays: Novel approach and system analysis, IEEE Transactions on Industrial Electronics,
                55, 2610–2621, July 2008.
              61.  D. Sera, L. Mathe, and F. Blaabjerg, Hierarchical control of PV strings with module integrated convert-
                ers in presence of a central MPPT, in IEEE Energy Conversion Congress and Exposition ECCE 2014,
                Pittsburgh, PA, 2014.
              62.  M. Vitelli, On the necessity of joint adoption of both distributed maximum power point tracking and central
                maximum power point tracking in PV systems, Progress in Photovoltaics: Research and Applications, 22,
                283–299, 2012.
   97   98   99   100   101   102   103   104   105   106   107