Page 217 - Renewable Energy Devices and System with Simulations in MATLAB and ANSYS
P. 217

204             Renewable Energy Devices and Systems with Simulations in MATLAB  and ANSYS ®
                                                                                ®

            REFERENCES
               1.  REN21, Renewables 2013: Global status report (GSR), [Online]. Available at: http://www.ren21.net/,
                June 2013.
               2.  C. Morris, Denmark surpasses 100 percent wind power, Energy Transition.de, 2013, [Online]. Available
                at: http://energytransition.de/2013/11/denmark-surpasses-100-percent-wind-power/, December 2014.
               3.  M. Liserre, R. Cardenas, M. Molinas, and J. Rodriguez, Overview of multi-MW wind turbines and wind
                parks, IEEE Transactions on Industrial Electronics, 58(4), 1081–1095, April 2011.
               4.  Z. Chen, J. M. Guerrero, and F. Blaabjerg, A review of the state of the art of power electronics for wind
                turbines, IEEE Transactions on Power Electronics, 24(8), 1859–1875, August 2009.
               5.  F. Blaabjerg, Z. Chen, and S. B. Kjaer, Power electronics as efficient interface in dispersed power genera-
                tion systems, IEEE Transactions on Power Electronics, 19(4), 1184–1194, 2004.
               6.  A. D. Hansen, F. Iov, F. Blaabjerg, and L. H. Hansen, Review of contemporary wind turbine concepts and
                their market penetration, Journal of Wind Engineering, 28(3), 247–263, 2004.
               7.  M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems,
                Academic Press, Amsterdam, the Netherlands, 2002.
               8.  F. Blaabjerg, M. Liserre, and K. Ma, Power electronics converters for wind turbine systems,  IEEE
                Transactions on Industry Applications, 48(2), 708–719, 2012.
               9.  Website of Vestas Wind Power, Wind turbines overview, Available: http://www.vestas.com/, April 2016.
              10.  UpWind Project, Design limits and solutions for very large wind turbines, March 2011.
              11.  Wind turbines: Part I: Design requirements, IEC 61400-1, 3rd edn.
              12.  K. Ma, M. Liserre, F. Blaabjerg, and T. Kerekes, Thermal loading and lifetime estimation for power
                device considering mission profiles in wind power converter, IEEE Transactions on Power Electronics,
                30(2), 590–602, 2015.
              13.  M. Tsili, A review of grid code technical requirements for wind farms, IET Journal of Renewable Power
                Generation, 3(3), 308–332, 2009.
              14.  Energinet: Wind turbines connected to grids with voltages below 100 kV, January 2003.
              15.  Energinet: Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW,
                September 2010.
              16.  TenneT TSO GmbH, Grid code: High and extra high voltage, December 2012.
              17.  TenneT TSOGmbH, Requirements for offshore grid connections in the grid of TenneT TSO GmbH, Dec
                2012.
              18.  W. Chen, F. Blaabjerg, M. Chen, and D. Xu, Capability of DFIG WTS to ride through recurring asym-
                metrical grid faults, in Proceedings of ECCE 2014, pp. 1827–1834, 2014.
              19.  S. Faulstich, P. Lyding, B. Hahn, and P. Tavner, Reliability of offshore turbines–identifying the risk by
                onshore experience, in Proceedings of European Offshore Wind, Stockholm, Sweden, 2009.
              20.  B. Hahn, M. Durstewitz, and K. Rohrig, Reliability of wind turbines: Experience of 15 years with 1500
                WTs, Wind Energy, Spinger, Berlin, Germany, 2007.
              21.  E. Wolfgang, L. Amigues, N. Seliger, and G. Lugert, Building-in reliability into power electronics sys-
                tems, The World of Electronic Packaging and System Integration, pp. 246–252, 2005.
              22.  D. Hirschmann, D. Tissen, S. Schroder, and R. W. De Doncker, Inverter design for hybrid electrical
                vehicles considering mission profiles, IEEE Conference on Vehicle Power and Propulsion, 7–9, pp. 1–6,
                September 2005.
              23.  C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, and P. Rodriguez, An
                overview of the reliability prediction related aspects of high power IGBTs in wind power applications,
                Microelectronics Reliability, 51(9–11), 1903–1907, 2011.
              24.  N. Kaminski and A. Kopta, Failure rates of HiPak modules due to cosmic rays, ABB application note
                5SYA 2042-04, March 2011.
              25.  E.  Wolfgang, Examples for failures in power electronics systems, Presented at ECPE  Tutorial on
                Reliability of Power Electronic Systems, Nuremberg, Germany, April 2007.
              26.  S. Yang, A. T. Bryant, P. A. Mawby, D. Xiang, L. Ran, and P. Tavner, An industry-based survey of reli-
                ability in power electronic converters, IEEE Transaction on Industry Applications, 47(3), 1441–1451,
                May/June 2011.
              27.  D. Zhou, Reliability assessment and energy loss evaluation of modern wind turbine systems, PhD thesis,
                Department of Energy Technology, Aalborg University, Aalborg, Denmark, 2014.
              28.  S. Muller, M. Deicke, and R. W. De Doncker, Doubly fed induction generator systems for wind turbines,
                IEEE Industry Applications Magazine, 8(3), 26–33, May/June 2002.
   212   213   214   215   216   217   218   219   220   221   222