Page 110 - Reservoir Geomechanics
P. 110

94     Reservoir geomechanics





                                                   s
                  150                               3


                                INSCRIBED                  MOHR–COULOMB
                  100        DRUCKER–PRAGER



                        CIRCUMSCRIBED
                   50   DRUCKER–PRAGER


                  (MPa)  0

                  s y                            HYDROSTATIC
                                                    AXIS


                   −50
                        s
                         2                                                   s
                                                                              1
                  −100             MODIFIED              HOEK–BROWN
                                 WIEBOLS–COOK

                    −150      −100      −50        0        50       100       150
                                                s (MPa)
                                                 x
              Figure 4.6. Yield envelopes projected in the π-plane for the Mohr–Coulomb criterion, the
              Hoek–Brown criterion, the modified Wiebols–Cook criterion and the circumscribed and inscribed
              Drucker–Prager criteria. After Colmenares and Zoback (2002). Reprinted with permission of
              Elsevier.


              perpendicular to the straight line σ 1 = σ 2 = σ 3 . Figure 4.6 shows the yield surface
              of the linearized Mohr–Coulomb criterion is hexagonal in the π-plane. Figure 4.7a
              shows the representation of the linearized Mohr–Coulomb criterion in σ 1 −σ 2 space for
              C 0 = 60 MPa and µ i = 0.6. In this figure (and Figures 4.8, 4.9 and 4.10b below),
              σ 1 at failure is shown as a function of σ 2 for experiments done at different values
              of σ 3 .



              Hoek– Brown criterion
              This empirical criterion uses the uniaxial compressive strength of the intact rock mat-
              erial as a scaling parameter, and introduces two dimensionless strength parameters,
   105   106   107   108   109   110   111   112   113   114   115