Page 215 - Schaum's Outline of Differential Equations
P. 215

198                  SOLVING  SECOND-ORDER  DIFFERENTIAL EQUATIONS               [CHAP. 20




         20.5.  Use Euler's method to solve /' - y = x; y (0) = 0, /(O) = 1 on the interval  [0,1] with h = 0.1.
                  Using the results of Problem 20.1, we have/(jt, y, z) = z, g(x, y,z)=y  + x,x 0 = 0, y 0 = 0, and z 0 = 1. Then, using
               (20.3),  we compute





















               Continuing in this manner, we generate Table 20-1.


                                              Table 20-1

                                  Method:  EULER'S METHOD

                                  Problem:  y" -  y = x; y(0) = 0, /(O) = 1
                                           ft = 0.1
                            x n
                                                              True  solution
                                      y n          Zn       Y(x)  = e -e~ -x
                                                                       x
                                                                   x
                            0.0      0.0000       1.0000        0.0000
                            0.1      0.1000       1.0000        0.1003
                            0.2      0.2000       1.0200        0.2027

                            0.3      0.3020       1.0600        0.3090
                            0.4      0.4080       1.1202        0.4215

                            0.5      0.5200       1.2010        0.5422
                            0.6      0.6401       1.3030        0.6733

                            0.7      0.7704       1.4270        0.8172
                            0.8      0.9131       1.5741        0.9762

                            0.9      1.0705       1.7454        1.1530
                            1.0      1.2451       1.9424        1.3504



         20.6.  Use Euler's method  to solve y" -  3y' + 2y = 0; y(0)  = -1, /(O) = 0 on the interval  [0, 1] with
               A = 0.1.
                  Using the results of Problem 20.2, we have/(jc, y, z) = Z, g(x, y, z) = 3z — 2y, x 0 = 0,y 0 = —1, and
   210   211   212   213   214   215   216   217   218   219   220