Page 216 - Schaum's Outline of Differential Equations
P. 216

CHAP. 20]            SOLVING SECOND-ORDER   DIFFERENTIAL  EQUATIONS                   199



               ZQ = 0. Then, using (20.3), we  compute















               Continuing in this manner, we generate Table 20-2.

                                                 Table 20-2


                                    Method:   EULER' S METHOD
                                    Problem:  /' - 3/ + 2y = 0 ; y(0) = - 1 , /(O) = 0

                                             ft = 0.1
                               x n
                                                                True  solution
                                         y n          Zn        Y(x)  = e *-2<?
                                                                      2
                              0.0     -1.0000       0.0000       -1.0000
                              0.1     -1.0000       0.2000      -0.9889
                              0.2     -0.9800       0.4600      -0.9510

                              0.3     -0.9340       0.7940      -0.8776

                              0.4     -0.8546       1.2190      -0.7581
                              0.5     -0.7327       1.7556      -0.5792
                              0.6     -0.5571       2.4288      -0.3241

                              0.7     -0.3143       3.2689        0.0277

                              0.8      0.0126       4.3125        0.5020
                              0.9      0.4439       5.6037        1.1304
                               1.0     1.0043       7.1960        1.9525



         20.7.  Use the Runge-Kutta method  to solve y" -y  = x; y(0) = 0, /(O) = 1 on the interval  [0, 1] with h = 0.1.
                  Using the results of Problem 20.1, we have/(jc, y, z) = Z, g(x, y,z)=y  + x,x Q = 0, y Q = 0, and z 0 =  1- Then, using
               (20.4)  and rounding all calculations to three decimal  places,  we compute:
   211   212   213   214   215   216   217   218   219   220   221