Page 218 - Schaum's Outline of Differential Equations
P. 218
CHAP. 20] SOLVING SECOND-ORDER DIFFERENTIAL EQUATIONS 201
Continuing in this manner, but rounding to seven decimal places, we generate Table 20-3.
Table 20-3
Method: RUNGE-KUTTA METHOD
Problem: y"-y = x; y(0) = 0, /(O) = 1
ft = 0.1
x n
True solution
y n z n Y(x) = e*-e~ -x
x
0.0 0.0000000 1.0000000 0.0000000
0.1 1.1003333 1.0100083 0.1003335
0.2 0.2026717 1.0401335 0.2026720
0.3 0.3090401 1.0906769 0.3090406
0.4 0.4215040 1.1621445 0.4215047
0.5 0.5421897 1.2552516 0.5421906
0.6 0.6733060 1.3709300 0.6733072
0.7 0.8171660 1.5103373 0.8171674
0.8 0.9762103 1.6748689 0.9762120
0.9 1.1530314 1.8661714 1.1530335
1.0 1.3504000 2.0861595 1.3504024
20.8. UsetheRunge-Kuttamethodtosolve/'-3}; + 2}; = 0;XO) = -l,/(0) = Oontheinterval [0,1] withA = 0.1.
Using the results of Problem 20.2, we have/(jc, y, z) = I, g(x, y, z) = 3z — 2y, X Q = 0,y Q = —1, and z 0 = 0. Then,
using (20.4), we compute: