Page 218 - Schaum's Outline of Differential Equations
P. 218

CHAP. 20]            SOLVING SECOND-ORDER   DIFFERENTIAL EQUATIONS                    201



               Continuing in this manner, but rounding to seven decimal places,  we generate Table 20-3.


                                                 Table 20-3

                                    Method:   RUNGE-KUTTA METHOD
                                    Problem:  y"-y = x; y(0)  = 0, /(O) = 1

                                              ft = 0.1
                               x n
                                                                 True  solution
                                         y n          z n      Y(x)  = e*-e~ -x
                                                                          x
                               0.0    0.0000000    1.0000000      0.0000000
                               0.1    1.1003333    1.0100083      0.1003335

                               0.2    0.2026717    1.0401335      0.2026720
                               0.3    0.3090401    1.0906769      0.3090406

                               0.4    0.4215040    1.1621445      0.4215047
                               0.5    0.5421897    1.2552516      0.5421906

                               0.6    0.6733060    1.3709300      0.6733072
                               0.7    0.8171660    1.5103373      0.8171674

                               0.8    0.9762103    1.6748689      0.9762120
                               0.9    1.1530314    1.8661714      1.1530335

                               1.0    1.3504000    2.0861595      1.3504024



         20.8.  UsetheRunge-Kuttamethodtosolve/'-3}; + 2}; = 0;XO) = -l,/(0) = Oontheinterval [0,1] withA = 0.1.
                  Using the results of Problem 20.2, we have/(jc, y,  z)  = I, g(x, y,  z) = 3z — 2y,  X Q  = 0,y Q = —1, and z 0 = 0. Then,
               using (20.4), we compute:
   213   214   215   216   217   218   219   220   221   222   223