Page 219 - Schaum's Outline of Differential Equations
P. 219

202                  SOLVING SECOND-ORDER   DIFFERENTIAL EQUATIONS               [CHAP. 20






















               Continuing in this manner, we generate Table 20-4.

                                                 Table 20-4


                                    Method:   RUNGE-KUTTA METHOD
                                    Problem:  /' - 3/ + 2y = 0 ; y(0) = - 1 , /(O) = 0
                                              h = 0.1
                               x n
                                                                True  solution
                                         y n          z n       Y(x)  = e  -  2e x
                                                                      21
                              0.0    -1.0000000    0.0000000     -1.0000000
                              0.1    -0.9889417    0.2324583     -0.9889391

                              0.2    -0.9509872    0.5408308     -0.9509808
                              0.3    -0.8776105    0.9444959     -0.8775988

                              0.4    -0.7581277    1.4673932     -0.7581085
                              0.5    -0.5791901    2.1390610     -0.5791607
                              0.6    -0.3241640    2.9959080     -0.3241207

                              0.7     0.0276326    4.0827685      0.0276946

                              0.8     0.5018638    5.4548068      0.5019506
                              0.9     1.1303217    7.1798462      1.1304412

                               1.0    1.9523298    9.3412190      1.9524924


                                              2
         20.9.  Use the Runge-Kutta method to solve 3.x /' -xy'  + y = 0; y(l)  = 4, /(I) = 2 on the interval [1,2]
               with h = 0.2.
                                                                        2
                  It follows from  Problem 20.3, we have/(jc, y, z) = Z, g(x, y, z) = (xz — y)l(3x ),  x 0 =l,y 0 = 4, and
               ZQ = 2. Using (20.4), we compute:
   214   215   216   217   218   219   220   221   222   223   224