Page 114 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 114

CHAP. 6]
               6.3  SINUSOIDAL FUNCTIONS      WAVEFORMS AND SIGNALS                                  103

                   A sinusoidal voltage vðtÞ is given by
                                                   vðtÞ¼ V 0 cos ð!t þ  Þ
               where V 0 is the amplitude, ! is the angular velocity, or angular frequency, and   is the phase angle.
                   The angular velocity ! may be expressed in terms of the period T or the frequency f, where f   1=T.
               The frequency is given in hertz, Hz, or cycles/s.  Since cos !t ¼ cos tð!t þ 2 Þ, ! and T are related by
               !T ¼ 2 .   And since it takes T seconds for vðtÞ to return to its original value, it goes through 1=T cycles
               in one second.
                   In summary, for sinusoidal functions we have
                                 ! ¼ 2 =T ¼ 2 f       f ¼ 1=T ¼ !=2     T ¼ 1=f ¼ 2 =!


               EXAMPLE 6.1 Graph each of the following functions and specify period and frequency.
                                    ðaÞ v 1 ðtÞ¼ cos t  ðbÞ v 2 ðtÞ¼ sin t  ðcÞ v 3 ðtÞ¼ 2 cos 2 t
                                 ðdÞ v 4 ðtÞ¼ 2 cos ð t=4   458Þ¼ 2 cos ð t=4    =4Þ¼ 2 cos½ ðt   1Þ=4Š
                                  ðeÞ v 5 ðtÞ¼ 5 cos ð10t þ 608Þ¼ 5 cos ð10t þ  =3Þ¼ 5 cos 10ðt þ  =30Þ
               (a) See Fig. 6-2(a).  T ¼ 2  ¼ 6:2832 s and f ¼ 0:159 Hz.
               (b) See Fig. 6-2(b).  T ¼ 2  ¼ 6:2832 s and f ¼ 0:159 Hz.
               (c)  See Fig. 6-2(c).  T ¼ 1 s and f ¼ 1 Hz.
               (d) See Fig. 6-2(d).  T ¼ 8 s and f ¼ 0:125 Hz.
               (e)  See Fig. 6-2(e).  T ¼ 0:2  ¼ 0:62832 s and f ¼ 1:59 Hz.

               EXAMPLE 6.2 Plot vðtÞ¼ 5 cos !t versus !t.
                   See Fig. 6.3.



               6.4  TIME SHIFT AND PHASE SHIFT
                   If the function vðtÞ¼ cos !t is delayed by   seconds, we get vðt    Þ¼ cos !ðt    Þ¼ cos ð!t    Þ,
               where   ¼ ! .  The delay shifts the graph of vðtÞ to the right by an amount of   seconds, which
               corresponds to a phase lag of   ¼ !  ¼ 2 f  .  A time shift of   seconds to the left on the graph produces
               vðt þ  Þ, resulting in a leading phase angle called an advance.
                   Conversely, a phase shift of   corresponds to a time shift of  .  Therefore, for a given phase shift the
               higher is the frequency, the smaller is the required time shift.

               EXAMPLE 6.3 Plot vðtÞ¼ 5 cos ð t=6 þ 308Þ versus t and  t=6.
                   Rewrite the given as

                                           vðtÞ¼ 5 cos ð t=6 þ  =6Þ¼ 5 cos½ ðt þ 1Þ=6Š
               This is a cosine function with period of 12 s, which is advanced in time by 1 s.  In other words, the graph is shifted to
               the left by 1 s or 308 as shown in Fig. 6-4.

               EXAMPLE 6.4 Consider a linear circuit with the following input-output pair valid for all ! and A:
                                     Input:  v i ðtÞ¼ A cos !t  Output:  v 0 ðtÞ¼ A cosð!t    Þ

               Given v i ðtÞ¼ cos ! 1 t þ cos ! 2 t, find v 0 ðtÞ when
                         6
               (a)   ¼ 10 ! [phase shift is proportional to frequency, Fig. 6-5(a)]
               (b)   ¼ 10  6  [phase shift is constant, Fig. 6-5(b)]
                   The output is v 0 ðtÞ¼ cos ð! 1 t     1 Þþ cos ð! 2 t     2 Þ.
   109   110   111   112   113   114   115   116   117   118   119