Page 118 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 118

WAVEFORMS AND SIGNALS
               CHAP. 6]
               6.6  THE AVERAGE AND EFFECTIVE (RMS) VALUES                                           107

                   A periodic function f ðtÞ, with a period T, has an average value F avg given by
                                                        ð            ð
                                                      1  T         1  t 0 þT
                                        F avg ¼h f ðtÞi ¼  f ðtÞ dt ¼     f ðtÞ dt                  ð11Þ
                                                      T  0         T  t 0
               The root-mean-square (rms) or effective value of f ðtÞ during the same period is defined by
                                                            ð            1=2
                                                          1  t 0 þT  2
                                             F eff ¼ F rms ¼     f ðtÞ dt                           ð12Þ
                                                          T
                                                             t 0
                             2     2
               It is seen that F eff  ¼h f ðtÞi.
                   Average and effective values of periodic functions are normally computed over one period.

               EXAMPLE 6.9 Find the average and effective values of the cosine wave vðtÞ¼ V m cos ð!t þ  Þ.
                   Using (11),
                                              ð
                                            1  T                V m
                                                                            T
                                      V avg ¼    V m cos ð!t þ  Þ dt ¼  ½sinð!t þ  ފ ¼ 0            ð13Þ
                                                                            0
                                            T  0                !T
               and using (12),
                                       ð                    ð
                                     1  T                 1  T
                                                                                     2
                                           2
                                 2
                                               2
                                                                2
                                V eff ¼   V m cos ð!t þ  Þ dt ¼  V m ½1 þ cos 2ð!t þ  ފ dt ¼ V m =2
                                     T  0                 2T  0
                                                             p ffiffiffi
               from which                            V eff ¼ V m = 2 ¼ 0:707V m                      (14)
               Equations (13) and (14) show that the results are independent of the frequency and phase angle  .  In other words,
               the average of a cosine wave and its rms value are always 0 and 0.707 V m , respectively.
               EXAMPLE 6.10   Find V avg and V eff of the half-rectified sine wave

                                                   V m sin !t  when sin !t > 0
                                             vðtÞ¼                                                   ð15Þ
                                                   0          when sin !t < 0
                   From (11),
                                              ð
                                             1  T=2          V m        T=2
                                       V avg ¼    V m sin !tdt ¼  ½  cos !tŠ 0  ¼ V m =              ð16Þ
                                            T  0             !T
               and from (12),
                                          ð                 ð
                                        1  T=2            1  T=2
                                    2          2  2              2                2
                                   V eff ¼    V m sin !tdt ¼    V m ð1   cos 2!tÞ dt ¼ V m =4
                                        T  0             2T  0
               from which                                 V eff ¼ V m =2                             (17)
               EXAMPLE 6.11   Find V avg and V eff of the periodic function vðtÞ where, for one period T,

                                             V 0    for 0 < t < T 1
                                      vðtÞ¼                          Period T ¼ 3T 1                 ð18Þ
                                              V 0   for T 1 < t < 3T 1
                                                          V 0           V 0
                   We have                          V avg ¼  ðT 1   2T 1 Þ¼                          (19)
                                                          3T            3
                                                         2
                                                    2
               and                                 V eff ¼  V 0  ðT 1 þ 2T 1 Þ¼ V 0 2
                                                        3T
               from which                                  V eff ¼ V 0                               (20)
                   The preceding result can be generalized as follows.  If jvðtÞj ¼ V 0 then V eff ¼ V 0 .
   113   114   115   116   117   118   119   120   121   122   123