Page 122 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 122

WAVEFORMS AND SIGNALS
               CHAP. 6]































                                                        Fig. 6-10                                    111

                   From Fig. 6-10,
                                                  8
                                                  <  0              for t < 0
                                                          6
                                            i C ðtÞ¼  I 0 ¼ 10 =T ðAÞ  for 0 < t < T                 ð32Þ
                                                  :
                                                    0               for t > T
                   For T ¼ 1s, I 0 ¼ 10  6  A; for T ¼ 1 ms, I 0 ¼ 10  3  A; and for T ¼ 1 ms, I 0 ¼ 1A.
                   In all the preceding cases, the charge accumulated across the capacitor at the end of the transition period is
                                                     ð  T
                                                 Q ¼    i C ðtÞ dt ¼ I 0 T ¼ 10  6  C
                                                      0
                The amount of charge at t ¼ T is independent of T.  It generates a voltage v C ¼ 10 V across the capacitor.


               EXAMPLE 6.18   Let d T ðt   t 0 Þ denote a narrow pulse of width T and height 1=T, which starts at t ¼ t 0 .  Consider
               a function f ðtÞ which is continuous between t 0 and t 0 þ T as shown in Fig. 6-11(a).  Find the limit of integral I in
               (33) when T approaches zero.
                                                     ð 1
                                                  I ¼    d T ðt   t 0 Þ f ðtÞ dt                     ð33Þ
                                                       1

                                                        1=T    t 0 < t < t 0 þ T
                                             d T ðt   t 0 Þ¼
                                                        0      elsewhere
                   Substituting d T in (33) we get
                                                        ð
                                                      1  t 0 þT    S
                                                   I ¼      f ðtÞ dt ¼                              ð34aÞ
                                                      T            T
                                                         t 0
               where S is the hatched area under f ðtÞ between t 0 and t 0 þ T in Fig. 6.11(b).  Assuming T to be small, the function
               f ðtÞ may be approximated by a line connecting A and B.  S is the area of the resulting trapezoid.
                                                     1
                                                  S ¼ ½ f ðt 0 Þþ f ðt 0 þ TފT                     ð34bÞ
                                                     2
                                                     1
                                                  I ¼ ½ f ðt 0 Þþ f ðt 0 þ Tފ                      ð34cÞ
                                                     2
               As T ! 0, d T ðt   t 0 Þ!  ðt   t 0 Þ and f ðt 0 þ TÞ! f ðt 0 Þ and from (34c) we get
   117   118   119   120   121   122   123   124   125   126   127