Page 117 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 117

WAVEFORMS AND SIGNALS
               106
               6.5  COMBINATIONS OF PERIODIC FUNCTIONS                                          [CHAP. 6

                   The sum of two periodic functions with respective periods T 1 and T 2 is a periodic function if a
               common period T ¼ n 1 T 1 ¼ n 2 T 2 , where n 1 and n 2 are integers, can be found.  This requires
               T 1 =T 2 ¼ n 2 =n 1 to be a rational number.  Otherwise, the sum is not a periodic function.
               EXAMPLE 6.5 Find the period of vðtÞ¼ cos 5t þ 3 sinð3t þ 458Þ.
                   The period of cos 5t is T 1 ¼ 2 =5 and the period of 3 sinð3t þ 458Þ is T 2 ¼ 2 =3.  Take T ¼ 2  ¼ 5T 1 ¼ 3T 2
               which is the smallest common integral multiple of T 1 and T 2 .  Observe that vðt þ TÞ¼ vðtÞ since
                             vðt þ TÞ¼ cos 5ðt þ 2 Þþ 3 sin½3ðt þ 2 Þþ 458м cos 5t þ 3 sinð3t þ 458Þ¼ vðtÞ
               Therefore, the period of vðtÞ is 2 .

               EXAMPLE 6.6 Is vðtÞ¼ cos t þ cos 2 t periodic?  Discuss.
                   The period of cos t is T 1 ¼ 2 .  The period of cos 2 t is T 2 ¼ 1. No common period T ¼ n 1 T 1 ¼ n 2 T 2 exists
               because T 1 =T 2 ¼ 2  is not a rational number.  Therefore, vðtÞ is not periodic.
               EXAMPLE 6.7 Given p ¼ 3:14, find the period of vðtÞ¼ cos t þ cos 2pt.
                   The period of cos t is T 1 ¼ 2  and the period of cos 2pt is T 2 ¼  =3:14.  The ratio T 1 =T 2 ¼ 6:28 is a rational
               number. The integer pair n 1 ¼ 25 and n 2 ¼ 157 satisfies the relation n 2 =n 1 ¼ T 1 =T 2 ¼ 628=100 ¼ 157=25.  There-
               fore, vðtÞ is periodic with period T ¼ n 1 T 1 ¼ n 2 T 2 ¼ 50  s.

               Trigonometric Identities
                   The trigonometric identities in Table 6-1 are useful in the study of circuit analysis.

                                                        Table 6-1

                                    sin a ¼  sinð aÞ                           (5a)
                                    cos a ¼ cos ð aÞ                           (5b)
                                    sin a ¼ cos ða   908Þ                      (5c)
                                    cos a ¼ sinða þ 908Þ                       (5d)
                                    sin 2a ¼ 2 sin a cos a                     (6a)
                                                           2
                                             2
                                                                         2
                                                   2
                                    cos 2a ¼ cos a   sin a ¼ 2 cos a   1 ¼ 1   2 sin a  (6b)
                                          1   cos 2a                           (7a)
                                      2
                                    sin a ¼
                                             2
                                          1 þ cos 2a                           (7b)
                                      2
                                    cos a ¼
                                              2
                                    sinða þ bÞ¼ sin a cos b þ cos a sin b      (8a)
                                    cosða þ bÞ¼ cos a cos b   sin a sin b      (8b)
                                             1
                                                        1
                                    sin a sin b ¼ cos ða   bÞ  cos ða þ bÞ     (9a)
                                             2          2
                                                        1
                                             1
                                    sin a cos b ¼ sin ða þ bÞþ sin ða   bÞ     (9b)
                                             2          2
                                                         1
                                              1
                                    cos a cos b ¼ cos ða þ bÞþ cos ða   bÞ     (9c)
                                              2          2
                                                            1
                                                   1
                                    sin a þ sin b ¼ 2 sin ða þ bÞ cos ða   bÞ  (10a)
                                                   2        2
                                                             1
                                                   1
                                    cos a þ cos b ¼ 2 cos ða þ bÞ cos ða   bÞ  (10b)
                                                   2         2
               EXAMPLE 6.8 Express vðtÞ¼ cos 5t sinð3t þ 458Þ as the sum of two cosine functions and find its period.
                                vðtÞ¼ cos 5t sinð3t þ 458Þ¼½sinð8t þ 458Þ  sinð2t   458ފ=2 [Eq. ð9bފ
                                   ¼½cos ð8t   458Þþ cos ð2t þ 458ފ=2  [Eq. (5cފ
               The period of vðtÞ is  .
   112   113   114   115   116   117   118   119   120   121   122