Page 199 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 199

HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY
               188











                                                        Fig. 8-40                               [CHAP. 8



               8.41  A series RLC circuit contains R ¼ 1 
, L ¼ 2 H, and C ¼ 0:25 F. Simultaneously apply magnitude and
                                                          4
                     frequency scaling, with K m ¼ 2000 and K f ¼ 10 .  What are the scaled element values?
                     Ans:  2000 
; 0:4H; 12:5 mF
               8.42  At a certain frequency ! 1 , a voltage V 1 ¼ 25 08 V applied to a passive network results in a current
                     I 1 ¼ 3:85  308 (A).  The network elements are magnitude-scaled with K m ¼ 10.  Obtain the current
                     which results from a second voltage source, V 2 ¼ 10 458 V, replacing the first, if the second source fre-
                                   3
                     quency is ! 2 ¼ 10 ! 1 .  Ans:  0:154 158 A
                                                               3
               8.43  In the circuit of Fig. 8-41 let R 1 C 1 ¼ R 2 C 2 ¼ 10 .  Find v 2 for t > 0 if:  (a) v 1 ¼ cos ð1000tÞuðtÞ,
                     (b) v 1 ¼ sin ð1000tÞuðtÞ.  Ans:  ðaÞ v 2 ¼ sin ð1000tÞ;  ðbÞ v 2 ¼ 1   cos ð1000tÞ

               8.44  In the circuit of Fig. 8-42 assume R ¼ 2 k
, C ¼ 10 nF, and R 2 ¼ R 1 and v 1 ¼ cos !t.  Find v 2 for the
                                                                    5
                                                    4
                     following frequencies:  (a) ! 0 ¼ 5   10 rad/s,  (b) ! 1 ¼ 10 rad/s.
                     Ans:  ðaÞ v 2 ¼ 2 sin ! 0 t;  ðbÞ v 2 ¼ 0:555 cos ð! 1 t   146:38Þ




















                               Fig. 8-41                                    Fig. 8-42



               8.45  Noninverting integrators.  In the circuits of Fig. 8-43(a) and 8-43(b) find the relationship between v 2 and v 1 .
                     Ans:  ðaÞ v 1 ¼ðRC=2Þdv 2 =dt;  ðbÞ v 1 ¼ 2RCdv 2 =dt


               8.46  In the circuit of Fig. 8-44 find the relationship between v 2 and v 1 .  Show that for R 1 C 1 ¼ R 2 C 2 we obtain
                     v 2 ¼ R 2 v 1 =ðR 1 þ R 2 Þ.

                                      dv 2                   dv 1
                     Ans:  R 1 R 2 ðC 1 þ C 2 Þ  þðR 1 þ R 2 Þv 2 ¼ R 1 R 2 C 1  þ R 2 v 1
                                       dt                    dt
   194   195   196   197   198   199   200   201   202   203   204