Page 194 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 194

183
                                 HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY
               CHAP. 8]
                         The denominator is the same as that in Problem 8.17, with the same roots and corresponding natural
                     frequencies.


               8.19  A 5000-rad/s sinusoidal source, V ¼ 100 08 V in phasor form, is applied to the circuit of
                     Fig. 8-27.  Obtain the magnitude-scaling factor K m and the element values which will limit the
                     current to 89 mA (maximum value).
                         At ! ¼ 5000 rad/s,

                                                               1
                                                    ð j!L 2 Þ R þ
                                                              j!C
                                         Z in ¼ j!L 1 þ
                                                               1
                                                     j!L 2 þ R þ
                                                              j!C
                                                     ð j0:500Þð0:40   j0:80Þ
                                            ¼ j0:250 þ                ¼ 1:124 69:158
                                                         0:40   j0:30
                                                                                     3
                     For jVj¼ 100 V, jIj¼ 100=1:124 ¼ 89:0 A.  Thus, to limit the current to 89   10  A, the impedance must
                                                 3
                     be increased by the factor K m ¼ 10 .
                                                                     3                   3
                         The scaled element values are as follows: R ¼ 10 ð0:4 
Þ¼ 400 
, L 1 ¼ 10 ð50 mHÞ¼ 50 mH,
                           3                                3
                     L 2 ¼ 10 ð100 mHÞ¼ 100 mH, and C ¼ð250 mFÞ=10 ¼ 0:250 mF.










                                                        Fig. 8-27


                                                                          6
               8.20  Refer to Fig. 8-28.  Obtain HðsÞ¼ V =V for s ¼ j4   10 rad/s.  Scale the network with
                                                        o
                                                           i
                     K ¼ 10   3  and compare HðsÞ for the two networks.
                       m










                                                        Fig. 8-28

                                                             3
                                                    6
                                    6
                         At ! ¼ 4   10 rad/s, X L ¼ð4   10 Þð0:5   10 Þ¼ 2000 
.  Then,
                                                             j2000     1
                                                      V o
                                                HðsÞ¼   ¼           ¼ p ffiffiffi  458
                                                      V i  2000 þ j2000  2
                                                                       3
                     After magnitude scaling, the inductive reactance is 10 ð2000 
Þ¼ 2 
 and the resistance is
                        3
                     10 ð2k
Þ¼ 2 
. Thus
                                                            j2    1
                                                     HðsÞ¼      ¼ p ffiffiffi  458
                                                           2 þ j2  2
   189   190   191   192   193   194   195   196   197   198   199